原文

=== Summary ===(总结)

Correctly Classified Instances(正确分类的实例)          45               90      %
Incorrectly Classified Instances (错误分类的实例)        5               10      %
Kappa statistic(Kappa统计量)                               0.792 
Mean absolute error(均值绝对误差)                           0.1   
Root mean squared error(均方根误差)                   0.3162
Relative absolute error(相对绝对误差)                    20.7954 %
Root relative squared error(相对均方根误差)             62.4666 %
Coverage of cases (0.95 level)          90      %
Mean rel. region size (0.95 level)      50      %
Total Number of Instances(实验的实例总数)               50     



第一行“Detailed Accuracy By Class”:

一个数据库有500个文档,其中有50个文档符合定义的问题。系统检索到75个文档,但是只有45个符合定义的问题。

1.TP Rate(真正元比率):45/50=90%
2.FP Rate(假正元比率):35/50=70%
3.Precision(精准度):P=45/75=60%
4.Recall(查全率):R=45/50=90%
5.F-Measure:是查准率和查全率的调和平均数
6.ROC Area:一般大于0.5,这个值越接近1,说明模型的诊断效果越好。这个值在0.5~0.7时有较低准确性,在0.7~0.9时有一定准确性,在0.9以上时有较高准确性。如果这个值等于0.5,说明诊断方法完全不起作用,无诊断价值,而小于0.5不符合真实情况,在实际中极少出现。

第二行:混淆矩阵“Confusion Matrix”
行:预测
列:真实

WEKA “Detailed Accuracy By Class”和“Confusion Matrix”含义的更多相关文章

  1. 多类别分类问题由 confusion matrix 到分类准确率(accuracy)的计算

    conf_mat = confusionmat(y_true, y_pred); % 首先根据数据集上的真实 label 值,和训练算法给出的预测 label 值, % 计算 confusion ma ...

  2. 性能度量之Confusion Matrix

    例子:一个Binary Classifier 假设我们要预测图片中的数字是否为数字5.如下面代码. X_train为训练集,每一个instance为一张28*28像素的图片,共784个features ...

  3. 机器学习-Confusion Matrix混淆矩阵、ROC、AUC

    本文整理了关于机器学习分类问题的评价指标——Confusion Matrix.ROC.AUC的概念以及理解. 混淆矩阵 在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型 ...

  4. 【分类模型评判指标 一】混淆矩阵(Confusion Matrix)

    转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839 略有改动,仅供个人学习使用 简介 混淆矩阵是ROC曲线绘制的基础 ...

  5. ML01 机器学习后利用混淆矩阵Confusion matrix 进行结果分析

      目标: 快速理解什么是混淆矩阵, 混淆矩阵是用来干嘛的. 首先理解什么是confusion matrix 看定义,在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是 ...

  6. 混淆矩阵(Confusion matrix)的原理及使用(scikit-learn 和 tensorflow)

    原理 在机器学习中, 混淆矩阵是一个误差矩阵, 常用来可视化地评估监督学习算法的性能. 混淆矩阵大小为 (n_classes, n_classes) 的方阵, 其中 n_classes 表示类的数量. ...

  7. python画混淆矩阵(confusion matrix)

    混淆矩阵(Confusion Matrix),是一种在深度学习中常用的辅助工具,可以让你直观地了解你的模型在哪一类样本里面表现得不是很好. 如上图,我们就可以看到,有一个样本原本是0的,却被预测成了1 ...

  8. 关于Confusion Matrix

    from sklearn.metrics import confusion_matrixy_true = [2, 0, 2, 2, 0, 1]y_pred = [0, 0, 2, 2, 0, 2]pr ...

  9. Coursera, Big Data 4, Machine Learning With Big Data (week 3/4/5)

    week 3 Classification KNN :基本思想是 input value 类似,就可能是同一类的 Decision Tree Naive Bayes Week 4 Evaluating ...

随机推荐

  1. Linux安装Redis、PHP安装Redis扩展模块

    Redis的官方下载: http://redis.io/download   步骤一:下载安装包  步骤二:编译源程序  步骤三:移动文件.便于管理  步骤四:启动 Redis服务  查看是否启动成功 ...

  2. SSD源码解读——数据读取

    之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进 ...

  3. numpy中与金融有关的函数

    fv函数 计算未来的价值 def fv(rate, nper, pmt, pv, when='end'): ... 参数: rate:存款/贷款每期的利率 nper:存款/贷款期数 pmt:存款/贷款 ...

  4. Linux系统组成和获取命令帮助1

    在GNU上边发布的都是源码,不可以直接拿来使用 源代码都是文本格式的,需要找个编译器编译成不同机器上使用的二进制,这样机器才可以运行的起来 英特儿的CPU有着x86,x64架构之分,x64又叫amd6 ...

  5. trigger添加及表达式

    创建触发器 点击Configuration(配置) → Hosts(主机) 点击hosts(主机)相关行的trigger 点击右上角的创建触发器(create trigger) name : 触发器名 ...

  6. [CF 1238F] The Maximum Subtree 树DP

    题意 给定一颗树,求这个树的最大子树,且这个子树是一个good-tree. good-tree的定义是:每个节点可以表示成一个数值区间,而树上的边表示两个点表示的数值区间相交. 题解 通过分析可以发现 ...

  7. java8 lambda表达式应用

    1.用lambda表达式实现Runnable非常简单// Java 8之前: new Thread(new Runnable() { @Override public void run() { Sys ...

  8. usb驱动正在使用不能卸载

    @ubuntu:/home/lyd# rmmod cyusb3610rmmod: ERROR: Module cyusb3610 is not currently loadedroot@ubuntu: ...

  9. 获取页面url信息

    方法: window.location.href = prefixURL+'webstatic/messageAnalysis/datadetail.html?id=' + num + "& ...

  10. Web API接口规范与测试方法

    目录 1.Web API接口 1.1接口的四大特点 1.2接口文档的编写:YApi 1.3接口测试工具:Postman 2.接口规范(restful) 2.1URL设计 2.1.1 数据的安全保障(h ...