本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest Boosting四种分类器的特点与分类方法,参考材料为密歇根大学Ji Zhu的pdf与组会上王博的讲解。

  • CART(Classification And Regression Tree)
         Breiman, Friedman, Olshen & Stone (1984), Quinlan (1993)
         思想:递归地将输入空间分割成矩形
         优点:可以进行变量选择,可以克服missing data,可以处理混合预测
         缺点:不稳定
 
     example:
对于下面的数据,希望分割成红色和绿色两个类,原本数据生成是这样的:
Red class: x1^2+x2^2>=4.6
Green class: otherwise
 
经过不断分割可以得到最后的分类树:
 
 
  • 那么怎么分割才是最好的呢?即怎样将输入空间分割成矩形是最佳策略呢?这里一般采用三中评价标准策略:
分裂时,找到使不纯度下降最快的分裂变量和分裂点。
 
  • 从结果可以看出CART可以通过变量选择迭代地建立一棵分类树,使得每次分类平面能最好地将剩余数据分为两类。
  • classification tree非常简单,但是经常会有noisy classifiers. 于是引入ensemble classifiers: bagging, random forest, 和boosting。
一般的, Boosting > Bagging > Classification tree(single tree)
 
 
 
 
 
 
  • Bagging (Breiman1996): 也称bootstrap aggregation

Bagging的策略:

- 从样本集中用Bootstrap采样选出n个样本

- 在所有属性上,对这n个样本建立分类器(CART or SVM or ...)

- 重复以上两步m次,i.e.build m个分类器(CART or SVM or ...)

- 将数据放在这m个分类器上跑,最后vote看到底分到哪一类

Fit many large trees to bootstrap resampled versions of the training data, and classify by majority vote.

下图是Bagging的选择策略,每次从N个数据中采样n次得到n个数据的一个bag,总共选择B次得到B个bags,也就是B个bootstrap samples.
 
 
 
 
 
 
 
  • Random forest(Breiman1999):
随机森林在bagging基础上做了修改。
 

- 从样本集中用Bootstrap采样选出n个样本,预建立CART

- 在树的每个节点上,从所有属性中随机选择k个属性,选择出一个最佳分割属性作为节点

- 重复以上两步m次,i.e.build m棵CART

- 这m个CART形成Random Forest

 
这里的random就是指
         1. Bootstrap中的随机选择子样本   
         2. Random subspace的算法从属性集中随机选择k个属性,每个树节点分裂时,从这随机的k个属性,选择最优的
 
结果证明有时候Random Forest比Bagging还要好。今天微软的Kinect里面就采用了Random Forest,相关论文Real-time Human Pose Recognition in Parts from Single Depth Images是CVPR2011的best paper。
 
 
 
 
 
 
  • Boosting(Freund & Schapire 1996):

Fit many large or small trees to reweighted versions of the training data. Classify by weighted majority vote.

首先给个大致的概念,boosting在选择hyperspace的时候给样本加了一个权值,使得loss function尽量考虑那些分错类的样本(i.e.分错类的样本weight大)。

怎么做的呢?

- boosting重采样的不是样本,而是样本的分布,对于分类正确的样本权值低,分类错误的样本权值高(通常是边界附近的样本),最后的分类器是很多弱分类器的线性叠加(加权组合),分类器相当简单。

AdaBoost和RealBoost是Boosting的两种实现方法。general的说,Adaboost较好用,RealBoost较准确。

下面是AdaBoost进行权值设置与更新的过程:

以下是几个算法的性能比较:

对于多类分类(Multi-class),generalization~是类似的过程:

比如对数据进行K类分类,而不通过每次二类分类总共分K-1次的方法,我们只需要每个弱分类器比random guessing好(i.e. 准确率>1/K)

多类分类算法流程:

多类分类器loss function的设计:

===============补充===============

数据挖掘的十大算法,以后可以慢慢研究:

C4.5

K-Means

SVM

Apriori

EM

PageRank

AdaBoost

kNN

NaiveBayes

CART

===============总结===============

Boosting可以进行变量选择,所以最开始的component可以是简单变量。

Boosting可能会overfit,因此在比较早的时候就停下来是正则化boosting的一个方法。

统计学习方法——CART, Bagging, Random Forest, Boosting的更多相关文章

  1. paper 85:机器统计学习方法——CART, Bagging, Random Forest, Boosting

    本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...

  2. 7. Bagging & Random Forest

    通过前面集成学习的介绍我们知道,欲得到泛化性能强的集成学习器,集成中个体学习器应尽量相互独立:虽然“独立”在现实任务中无法做到,但可以设法使基学习器尽可能具有较大差异. 1. Bagging 自助采样 ...

  3. 统计学习方法 | 第1章 统计学习方法概论 | np.random.rand()函数

    np.random.rand()函数 语法: np.random.rand(d0,d1,d2……dn) 注:使用方法与np.random.randn()函数相同 作用: 通过本函数可以返回一个或一组服 ...

  4. bagging,random forest,boosting(adaboost、GBDT),XGBoost小结

    Bagging 从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping(有放回)的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中).共进行 ...

  5. 随机森林(Random Forest),决策树,bagging, boosting(Adaptive Boosting,GBDT)

    http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 ...

  6. 机器学习方法(六):随机森林Random Forest,bagging

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 前面机器学习方法(四)决策树讲了经典 ...

  7. Ensemble Learning 之 Bagging 与 Random Forest

    Bagging 全称是 Boostrap Aggregation,是除 Boosting 之外另一种集成学习的方式,之前在已经介绍过关与 Ensemble Learning 的内容与评价标准,其中“多 ...

  8. Bootstrap,Bagging and Random Forest Algorithm

    Bootstrap Method:在统计学中,Bootstrap从原始数据中抽取子集,然后分别求取各个子集的统计特征,最终将统计特征合并.例如求取某国人民的平均身高,不可能测量每一个人的身高,但却可以 ...

  9. Aggregation(1):Blending、Bagging、Random Forest

    假设我们有很多机器学习算法(可以是前面学过的任何一个),我们能不能同时使用它们来提高算法的性能?也即:三个臭皮匠赛过诸葛亮. 有这么几种aggregation的方式: 一些性能不太好的机器学习算法(弱 ...

随机推荐

  1. Android项目实战(三十四):蓝牙4.0 BLE 多设备连接

    最近项目有个需求,手机设备连接多个蓝牙4.0 设备 并获取这些设备的数据. 查询了很多资料终于实现,现进行总结. ------------------------------------------- ...

  2. Android事件传递机制详解及最新源码分析——Activity篇

    版权声明:本文出自汪磊的博客,转载请务必注明出处. 在前两篇我们共同探讨了事件传递机制<View篇>与<ViewGroup篇>,我们知道View触摸事件是ViewGroup传递 ...

  3. cocos quick lua 输入框点击穿透的问题处理方案。

    条件:当前版本quick-3.3 -lua,系统 win7. 问题:在输入框(textField或者editbox,下文"输入框"就代表这两种)打开的情况下弹出其他界面盖住输入框, ...

  4. Java笔记—— 格式化的输入和输出

    精确输出 可以用8个字符的宽度和小数点后了两个字符的精度打印x. double x = 10000.0 /3.0; System.out.printf("%8.2f\n",x);/ ...

  5. 深度神经网络在量化交易里的应用 之二 -- 用深度网络(LSTM)预测5日收盘价格

        距离上一篇文章,正好两个星期. 这边文章9月15日 16:30 开始写. 可能几个小时后就写完了.用一句粗俗的话说, "当你怀孕的时候,别人都知道你怀孕了, 但不知道你被日了多少回 ...

  6. Node.js之eventproxy详解

    安装 npm install eventproxy --save 调用 var EventProxy = require('eventproxy'); 异步协作 多类型异步协作 此处以页面渲染为场景, ...

  7. 个人作业3——个人总结(Alpha阶段)

    个人总结 Alpha阶段总结: 起初关于手机app的开发真的一无所知,选了一条较远的路走(使用 Android Studio 来开发 Android 应用更加方便,而我们选用 Eclipse 开发 A ...

  8. 【Alpha】第三次Daily Scrum Meeting

    GIT 一.今日站立式会议照片 二.会议内容 1.确定开发人员负责开发模块 开发人员 开发模块 杨嘉成 注册登陆模块 吴文庆 服务模块 程志铭 个人中心 2.测试人员在开发人员完成该模块后紧跟测试 三 ...

  9. 搭建JSP开发环境

    所谓"工欲善其事,必先利其器",要进行JSP网站开发,首先需要把整个开发环境搭建好. JSP开发运行环境 -开发工具包JDK(Java Develop Kit),即Java开发工具 ...

  10. 201521123067 《Java程序设计》第8周学习总结

    201521123067 <Java程序设计>第8周学习总结 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 Q1.List中指定 ...