Java线程池使用和分析(二) - execute()原理
相关文章目录:
Java线程池ThreadPoolExecutor使用和分析(一)
Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理
Java线程池ThreadPoolExecutor使用和分析(三) - 终止线程池原理
execute()是 java.util.concurrent.Executor接口中唯一的方法,JDK注释中的描述是“在未来的某一时刻执行命令command”,即向线程池中提交任务,在未来某个时刻执行,提交的任务必须实现Runnable接口,该提交方式不能获取返回值。下面是对execute()方法内部原理的分析,分析前先简单介绍线程池有哪些状态,在一系列执行过程中涉及线程池状态相关的判断。以下分析基于JDK 1.7
以下是本文的目录大纲:
6、processWorkerExit() -- worker线程退出
若有不正之处请多多谅解,欢迎批评指正、互相讨论。
请尊重作者劳动成果,转载请标明原文链接:
http://www.cnblogs.com/trust-freedom/p/6681948.html
一、线程池的执行流程
1、如果线程池中的线程数量少于corePoolSize,就创建新的线程来执行新添加的任务
2、如果线程池中的线程数量大于等于corePoolSize,但队列workQueue未满,则将新添加的任务放到workQueue中
3、如果线程池中的线程数量大于等于corePoolSize,且队列workQueue已满,但线程池中的线程数量小于maximumPoolSize,则会创建新的线程来处理被添加的任务
4、如果线程池中的线程数量等于了maximumPoolSize,就用RejectedExecutionHandler来执行拒绝策略
二、线程池状态
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS; // Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
其中ctl这个AtomicInteger的功能很强大,其高3位用于维护线程池运行状态,低29位维护线程池中线程数量
1、RUNNING:-1<<COUNT_BITS,即高3位为1,低29位为0,该状态的线程池会接收新任务,也会处理在阻塞队列中等待处理的任务
2、SHUTDOWN:0<<COUNT_BITS,即高3位为0,低29位为0,该状态的线程池不会再接收新任务,但还会处理已经提交到阻塞队列中等待处理的任务
3、STOP:1<<COUNT_BITS,即高3位为001,低29位为0,该状态的线程池不会再接收新任务,不会处理在阻塞队列中等待的任务,而且还会中断正在运行的任务
4、TIDYING:2<<COUNT_BITS,即高3位为010,低29位为0,所有任务都被终止了,workerCount为0,为此状态时还将调用terminated()方法
5、TERMINATED:3<<COUNT_BITS,即高3位为100,低29位为0,terminated()方法调用完成后变成此状态
这些状态均由int型表示,大小关系为 RUNNING<SHUTDOWN<STOP<TIDYING<TERMINATED,这个顺序基本上也是遵循线程池从 运行 到 终止这个过程。
runStateOf(int c) 方法:c & 高3位为1,低29位为0的~CAPACITY,用于获取高3位保存的线程池状态
workerCountOf(int c)方法:c & 高3位为0,低29位为1的CAPACITY,用于获取低29位的线程数量
ctlOf(int rs, int wc)方法:参数rs表示runState,参数wc表示workerCount,即根据runState和workerCount打包合并成ctl
三、任务提交内部原理
1、execute() -- 提交任务
/**
* Executes the given task sometime in the future. The task
* may execute in a new thread or in an existing pooled thread.
* 在未来的某个时刻执行给定的任务。这个任务用一个新线程执行,或者用一个线程池中已经存在的线程执行
*
* If the task cannot be submitted for execution, either because this
* executor has been shutdown or because its capacity has been reached,
* the task is handled by the current {@code RejectedExecutionHandler}.
* 如果任务无法被提交执行,要么是因为这个Executor已经被shutdown关闭,要么是已经达到其容量上限,任务会被当前的RejectedExecutionHandler处理
*
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* {@code RejectedExecutionHandler}, if the task
* cannot be accepted for execution RejectedExecutionException是一个RuntimeException
* @throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException(); /*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
* 如果运行的线程少于corePoolSize,尝试开启一个新线程去运行command,command作为这个线程的第一个任务
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
* 如果任务成功放入队列,我们仍需要一个双重校验去确认是否应该新建一个线程(因为可能存在有些线程在我们上次检查后死了) 或者 从我们进入这个方法后,pool被关闭了
* 所以我们需要再次检查state,如果线程池停止了需要回滚入队列,如果池中没有线程了,新开启 一个线程
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
* 如果无法将任务入队列(可能队列满了),需要新开区一个线程(自己:往maxPoolSize发展)
* 如果失败了,说明线程池shutdown 或者 饱和了,所以我们拒绝任务
*/
int c = ctl.get(); /**
* 1、如果当前线程数少于corePoolSize(可能是由于addWorker()操作已经包含对线程池状态的判断,如此处没加,而入workQueue前加了)
*/
if (workerCountOf(c) < corePoolSize) {
//addWorker()成功,返回
if (addWorker(command, true))
return; /**
* 没有成功addWorker(),再次获取c(凡是需要再次用ctl做判断时,都会再次调用ctl.get())
* 失败的原因可能是:
* 1、线程池已经shutdown,shutdown的线程池不再接收新任务
* 2、workerCountOf(c) < corePoolSize 判断后,由于并发,别的线程先创建了worker线程,导致workerCount>=corePoolSize
*/
c = ctl.get();
} /**
* 2、如果线程池RUNNING状态,且入队列成功
*/
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();//再次校验位 /**
* 再次校验放入workerQueue中的任务是否能被执行
* 1、如果线程池不是运行状态了,应该拒绝添加新任务,从workQueue中删除任务
* 2、如果线程池是运行状态,或者从workQueue中删除任务失败(刚好有一个线程执行完毕,并消耗了这个任务),确保还有线程执行任务(只要有一个就够了)
*/
//如果再次校验过程中,线程池不是RUNNING状态,并且remove(command)--workQueue.remove()成功,拒绝当前command
if (! isRunning(recheck) && remove(command))
reject(command);
//如果当前worker数量为0,通过addWorker(null, false)创建一个线程,其任务为null
//为什么只检查运行的worker数量是不是0呢?? 为什么不和corePoolSize比较呢??
//只保证有一个worker线程可以从queue中获取任务执行就行了??
//因为只要还有活动的worker线程,就可以消费workerQueue中的任务
else if (workerCountOf(recheck) == 0)
addWorker(null, false); //第一个参数为null,说明只为新建一个worker线程,没有指定firstTask
//第二个参数为true代表占用corePoolSize,false占用maxPoolSize
}
/**
* 3、如果线程池不是running状态 或者 无法入队列
* 尝试开启新线程,扩容至maxPoolSize,如果addWork(command, false)失败了,拒绝当前command
*/
else if (!addWorker(command, false))
reject(command);
}
execute(Runnable command)
参数:
command 提交执行的任务,不能为空
执行流程:
1、如果线程池当前线程数量少于corePoolSize,则addWorker(command, true)创建新worker线程,如创建成功返回,如没创建成功,则执行后续步骤;
addWorker(command, true)失败的原因可能是:
A、线程池已经shutdown,shutdown的线程池不再接收新任务
B、workerCountOf(c) < corePoolSize 判断后,由于并发,别的线程先创建了worker线程,导致workerCount>=corePoolSize
2、如果线程池还在running状态,将task加入workQueue阻塞队列中,如果加入成功,进行double-check,如果加入失败(可能是队列已满),则执行后续步骤;
double-check主要目的是判断刚加入workQueue阻塞队列的task是否能被执行
A、如果线程池已经不是running状态了,应该拒绝添加新任务,从workQueue中删除任务
B、如果线程池是运行状态,或者从workQueue中删除任务失败(刚好有一个线程执行完毕,并消耗了这个任务),确保还有线程执行任务(只要有一个就够了)
3、如果线程池不是running状态 或者 无法入队列,尝试开启新线程,扩容至maxPoolSize,如果addWork(command, false)失败了,拒绝当前command
2、addWorker() -- 添加worker线程
/**
* Checks if a new worker can be added with respect to current
* pool state and the given bound (either core or maximum). If so,
* the worker count is adjusted accordingly, and, if possible, a
* new worker is created and started, running firstTask as its
* first task. This method returns false if the pool is stopped or
* eligible to shut down. It also returns false if the thread
* factory fails to create a thread when asked. If the thread
* creation fails, either due to the thread factory returning
* null, or due to an exception (typically OutOfMemoryError in
* Thread#start), we roll back cleanly.
* 检查根据当前线程池的状态和给定的边界(core or maximum)是否可以创建一个新的worker
* 如果是这样的话,worker的数量做相应的调整,如果可能的话,创建一个新的worker并启动,参数中的firstTask作为worker的第一个任务
* 如果方法返回false,可能因为pool已经关闭或者调用过了shutdown
* 如果线程工厂创建线程失败,也会失败,返回false
* 如果线程创建失败,要么是因为线程工厂返回null,要么是发生了OutOfMemoryError
*
* @param firstTask the task the new thread should run first (or
* null if none). Workers are created with an initial first task
* (in method execute()) to bypass(绕开) queuing when there are fewer
* than corePoolSize threads (in which case we always start one),
* or when the queue is full (in which case we must bypass queue).
* Initially idle threads are usually created via
* prestartCoreThread or to replace other dying workers.
*
* @param core if true use corePoolSize as bound, else
* maximumPoolSize. (A boolean indicator is used here rather than a
* value to ensure reads of fresh values after checking other pool
* state).
* @return true if successful
*/
private boolean addWorker(Runnable firstTask, boolean core) {
//外层循环,负责判断线程池状态
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c); //状态 // Check if queue empty only if necessary.
/**
* 线程池的state越小越是运行状态,runnbale=-1,shutdown=0,stop=1,tidying=2,terminated=3
* 1、如果线程池state已经至少是shutdown状态了
* 2、并且以下3个条件任意一个是false
* rs == SHUTDOWN (隐含:rs>=SHUTDOWN)false情况: 线程池状态已经超过shutdown,可能是stop、tidying、terminated其中一个,即线程池已经终止
* firstTask == null (隐含:rs==SHUTDOWN)false情况: firstTask不为空,rs==SHUTDOWN 且 firstTask不为空,return false,场景是在线程池已经shutdown后,还要添加新的任务,拒绝
* ! workQueue.isEmpty() (隐含:rs==SHUTDOWN,firstTask==null)false情况: workQueue为空,当firstTask为空时是为了创建一个没有任务的线程,再从workQueue中获取任务,如果workQueue已经为空,那么就没有添加新worker线程的必要了
* return false,即无法addWorker()
*/
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false; //内层循环,负责worker数量+1
for (;;) {
int wc = workerCountOf(c); //worker数量 //如果worker数量>线程池最大上限CAPACITY(即使用int低29位可以容纳的最大值)
//或者( worker数量>corePoolSize 或 worker数量>maximumPoolSize ),即已经超过了给定的边界
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false; //调用unsafe CAS操作,使得worker数量+1,成功则跳出retry循环
if (compareAndIncrementWorkerCount(c))
break retry; //CAS worker数量+1失败,再次读取ctl
c = ctl.get(); // Re-read ctl //如果状态不等于之前获取的state,跳出内层循环,继续去外层循环判断
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
// else CAS失败时因为workerCount改变了,继续内层循环尝试CAS对worker数量+1
}
} /**
* worker数量+1成功的后续操作
* 添加到workers Set集合,并启动worker线程
*/
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
w = new Worker(firstTask); //1、设置worker这个AQS锁的同步状态state=-1
//2、将firstTask设置给worker的成员变量firstTask
//3、使用worker自身这个runnable,调用ThreadFactory创建一个线程,并设置给worker的成员变量thread
final Thread t = w.thread;
if (t != null) {
mainLock.lock();
try {
//--------------------------------------------这部分代码是上锁的
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
// 当获取到锁后,再次检查
int c = ctl.get();
int rs = runStateOf(c); //如果线程池在运行running<shutdown 或者 线程池已经shutdown,且firstTask==null(可能是workQueue中仍有未执行完成的任务,创建没有初始任务的worker线程执行)
//worker数量-1的操作在addWorkerFailed()
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable 线程已经启动,抛非法线程状态异常
throw new IllegalThreadStateException(); workers.add(w);//workers是一个HashSet<Worker> //设置最大的池大小largestPoolSize,workerAdded设置为true
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
//--------------------------------------------
}
finally {
mainLock.unlock();
} //如果往HashSet中添加worker成功,启动线程
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
//如果启动线程失败
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
addWorker(Runnable firstTask, boolean core)
参数:
firstTask: worker线程的初始任务,可以为空
core: true:将corePoolSize作为上限,false:将maximumPoolSize作为上限
addWorker方法有4种传参的方式:
1、addWorker(command, true)
2、addWorker(command, false)
3、addWorker(null, false)
4、addWorker(null, true)
在execute方法中就使用了前3种,结合这个核心方法进行以下分析
第一个:线程数小于corePoolSize时,放一个需要处理的task进Workers Set。如果Workers Set长度超过corePoolSize,就返回false
第二个:当队列被放满时,就尝试将这个新来的task直接放入Workers Set,而此时Workers Set的长度限制是maximumPoolSize。如果线程池也满了的话就返回false
第三个:放入一个空的task进workers Set,长度限制是maximumPoolSize。这样一个task为空的worker在线程执行的时候会去任务队列里拿任务,这样就相当于创建了一个新的线程,只是没有马上分配任务
第四个:这个方法就是放一个null的task进Workers Set,而且是在小于corePoolSize时,如果此时Set中的数量已经达到corePoolSize那就返回false,什么也不干。实际使用中是在prestartAllCoreThreads()方法,这个方法用来为线程池预先启动corePoolSize个worker等待从workQueue中获取任务执行
执行流程:
1、判断线程池当前是否为可以添加worker线程的状态,可以则继续下一步,不可以return false:
A、线程池状态>shutdown,可能为stop、tidying、terminated,不能添加worker线程
B、线程池状态==shutdown,firstTask不为空,不能添加worker线程,因为shutdown状态的线程池不接收新任务
C、线程池状态==shutdown,firstTask==null,workQueue为空,不能添加worker线程,因为firstTask为空是为了添加一个没有任务的线程再从workQueue获取task,而workQueue为空,说明添加无任务线程已经没有意义
2、线程池当前线程数量是否超过上限(corePoolSize 或 maximumPoolSize),超过了return false,没超过则对workerCount+1,继续下一步
3、在线程池的ReentrantLock保证下,向Workers Set中添加新创建的worker实例,添加完成后解锁,并启动worker线程,如果这一切都成功了,return true,如果添加worker入Set失败或启动失败,调用addWorkerFailed()逻辑
3、内部类Worker
/**
* Class Worker mainly maintains interrupt control state for
* threads running tasks, along with other minor bookkeeping.
* This class opportunistically extends AbstractQueuedSynchronizer
* to simplify acquiring and releasing a lock surrounding each
* task execution. This protects against interrupts that are
* intended to wake up a worker thread waiting for a task from
* instead interrupting a task being run. We implement a simple
* non-reentrant mutual exclusion lock rather than use
* ReentrantLock because we do not want worker tasks to be able to
* reacquire the lock when they invoke pool control methods like
* setCorePoolSize. Additionally, to suppress interrupts until
* the thread actually starts running tasks, we initialize lock
* state to a negative value, and clear it upon start (in
* runWorker).
*
* Worker类大体上管理着运行线程的中断状态 和 一些指标
* Worker类投机取巧的继承了AbstractQueuedSynchronizer来简化在执行任务时的获取、释放锁
* 这样防止了中断在运行中的任务,只会唤醒(中断)在等待从workQueue中获取任务的线程
* 解释:
* 为什么不直接执行execute(command)提交的command,而要在外面包一层Worker呢??
* 主要是为了控制中断
* 用什么控制??
* 用AQS锁,当运行时上锁,就不能中断,TreadPoolExecutor的shutdown()方法中断前都要获取worker锁
* 只有在等待从workQueue中获取任务getTask()时才能中断
* worker实现了一个简单的不可重入的互斥锁,而不是用ReentrantLock可重入锁
* 因为我们不想让在调用比如setCorePoolSize()这种线程池控制方法时可以再次获取锁(重入)
* 解释:
* setCorePoolSize()时可能会interruptIdleWorkers(),在对一个线程interrupt时会要w.tryLock()
* 如果可重入,就可能会在对线程池操作的方法中中断线程,类似方法还有:
* setMaximumPoolSize()
* setKeppAliveTime()
* allowCoreThreadTimeOut()
* shutdown()
* 此外,为了让线程真正开始后才可以中断,初始化lock状态为负值(-1),在开始runWorker()时将state置为0,而state>=0才可以中断
*
*
* Worker继承了AQS,实现了Runnable,说明其既是一个可运行的任务,也是一把锁(不可重入)
*/
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L; /** Thread this worker is running in. Null if factory fails. */
final Thread thread; //利用ThreadFactory和 Worker这个Runnable创建的线程对象 /** Initial task to run. Possibly null. */
Runnable firstTask; /** Per-thread task counter */
volatile long completedTasks; /**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
//设置AQS的同步状态private volatile int state,是一个计数器,大于0代表锁已经被获取
setState(-1); // inhibit interrupts until runWorker
// 在调用runWorker()前,禁止interrupt中断,在interruptIfStarted()方法中会判断 getState()>=0
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this); //根据当前worker创建一个线程对象
//当前worker本身就是一个runnable任务,也就是不会用参数的firstTask创建线程,而是调用当前worker.run()时调用firstTask.run()
} /** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this); //runWorker()是ThreadPoolExecutor的方法
} // Lock methods
//
// The value 0 represents the unlocked state. 0代表“没被锁定”状态
// The value 1 represents the locked state. 1代表“锁定”状态 protected boolean isHeldExclusively() {
return getState() != 0;
} /**
* 尝试获取锁
* 重写AQS的tryAcquire(),AQS本来就是让子类来实现的
*/
protected boolean tryAcquire(int unused) {
//尝试一次将state从0设置为1,即“锁定”状态,但由于每次都是state 0->1,而不是+1,那么说明不可重入
//且state==-1时也不会获取到锁
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread()); //设置exclusiveOwnerThread=当前线程
return true;
}
return false;
} /**
* 尝试释放锁
* 不是state-1,而是置为0
*/
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
} public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); } /**
* 中断(如果运行)
* shutdownNow时会循环对worker线程执行
* 且不需要获取worker锁,即使在worker运行时也可以中断
*/
void interruptIfStarted() {
Thread t;
//如果state>=0、t!=null、且t没有被中断
//new Worker()时state==-1,说明不能中断
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
Worker类
Worker类本身既实现了Runnable,又继承了AbstractQueuedSynchronizer(以下简称AQS),所以其既是一个可执行的任务,又可以达到锁的效果
new Worker()
1、将AQS的state置为-1,在runWoker()前不允许中断
2、待执行的任务会以参数传入,并赋予firstTask
3、用Worker这个Runnable创建Thread
之所以Worker自己实现Runnable,并创建Thread,在firstTask外包一层,是因为要通过Worker控制中断,而firstTask这个工作任务只是负责执行业务
Worker控制中断主要有以下几方面:
1、初始AQS状态为-1,此时不允许中断interrupt(),只有在worker线程启动了,执行了runWoker(),将state置为0,才能中断
不允许中断体现在:
A、shutdown()线程池时,会对每个worker tryLock()上锁,而Worker类这个AQS的tryAcquire()方法是固定将state从0->1,故初始状态state==-1时tryLock()失败,没发interrupt()
B、shutdownNow()线程池时,不用tryLock()上锁,但调用worker.interruptIfStarted()终止worker,interruptIfStarted()也有state>0才能interrupt的逻辑
2、为了防止某种情况下,在运行中的worker被中断,runWorker()每次运行任务时都会lock()上锁,而shutdown()这类可能会终止worker的操作需要先获取worker的锁,这样就防止了中断正在运行的线程
Worker实现的AQS为不可重入锁,为了是在获得worker锁的情况下再进入其它一些需要加锁的方法
Worker和Task的区别:
Worker是线程池中的线程,而Task虽然是runnable,但是并没有真正执行,只是被Worker调用了run方法,后面会看到这部分的实现。
4、runWorker() -- 执行任务
/**
* Main worker run loop. Repeatedly gets tasks from queue and
* executes them, while coping with a number of issues:
* 重复的从队列中获取任务并执行,同时应对一些问题:
*
* 1. We may start out with an initial task, in which case we
* don't need to get the first one. Otherwise, as long as pool is
* running, we get tasks from getTask. If it returns null then the
* worker exits due to changed pool state or configuration
* parameters. Other exits result from exception throws in
* external code, in which case completedAbruptly holds, which
* usually leads processWorkerExit to replace this thread.
* 我们可能使用一个初始化任务开始,即firstTask为null
* 然后只要线程池在运行,我们就从getTask()获取任务
* 如果getTask()返回null,则worker由于改变了线程池状态或参数配置而退出
* 其它退出因为外部代码抛异常了,这会使得completedAbruptly为true,这会导致在processWorkerExit()方法中替换当前线程
*
* 2. Before running any task, the lock is acquired to prevent
* other pool interrupts while the task is executing, and
* clearInterruptsForTaskRun called to ensure that unless pool is
* stopping, this thread does not have its interrupt set.
* 在任何任务执行之前,都需要对worker加锁去防止在任务运行时,其它的线程池中断操作
* clearInterruptsForTaskRun保证除非线程池正在stoping,线程不会被设置中断标示
*
* 3. Each task run is preceded by a call to beforeExecute, which
* might throw an exception, in which case we cause thread to die
* (breaking loop with completedAbruptly true) without processing
* the task.
* 每个任务执行前会调用beforeExecute(),其中可能抛出一个异常,这种情况下会导致线程die(跳出循环,且completedAbruptly==true),没有执行任务
* 因为beforeExecute()的异常没有cache住,会上抛,跳出循环
*
* 4. Assuming beforeExecute completes normally, we run the task,
* gathering any of its thrown exceptions to send to
* afterExecute. We separately handle RuntimeException, Error
* (both of which the specs guarantee that we trap) and arbitrary
* Throwables. Because we cannot rethrow Throwables within
* Runnable.run, we wrap them within Errors on the way out (to the
* thread's UncaughtExceptionHandler). Any thrown exception also
* conservatively causes thread to die.
* 假定beforeExecute()正常完成,我们执行任务
* 汇总任何抛出的异常并发送给afterExecute(task, thrown)
* 因为我们不能在Runnable.run()方法中重新上抛Throwables,我们将Throwables包装到Errors上抛(会到线程的UncaughtExceptionHandler去处理)
* 任何上抛的异常都会导致线程die
*
* 5. After task.run completes, we call afterExecute, which may
* also throw an exception, which will also cause thread to
* die. According to JLS Sec 14.20, this exception is the one that
* will be in effect even if task.run throws.
* 任务执行结束后,调用afterExecute(),也可能抛异常,也会导致线程die
* 根据JLS Sec 14.20,这个异常(finally中的异常)会生效
*
* The net effect of the exception mechanics is that afterExecute
* and the thread's UncaughtExceptionHandler have as accurate
* information as we can provide about any problems encountered by
* user code.
*
* @param w the worker
*/
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
// new Worker()是state==-1,此处是调用Worker类的tryRelease()方法,将state置为0, 而interruptIfStarted()中只有state>=0才允许调用中断
boolean completedAbruptly = true; //是否“突然完成”,如果是由于异常导致的进入finally,那么completedAbruptly==true就是突然完成的
try {
/**
* 如果task不为null,或者从阻塞队列中getTask()不为null
*/
while (task != null || (task = getTask()) != null) {
w.lock(); //上锁,不是为了防止并发执行任务,为了在shutdown()时不终止正在运行的worker // If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
/**
* clearInterruptsForTaskRun操作
* 确保只有在线程stoping时,才会被设置中断标示,否则清除中断标示
* 1、如果线程池状态>=stop,且当前线程没有设置中断状态,wt.interrupt()
* 2、如果一开始判断线程池状态<stop,但Thread.interrupted()为true,即线程已经被中断,又清除了中断标示,再次判断线程池状态是否>=stop
* 是,再次设置中断标示,wt.interrupt()
* 否,不做操作,清除中断标示后进行后续步骤
*/
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt(); //当前线程调用interrupt()中断 try {
//执行前(子类实现)
beforeExecute(wt, task); Throwable thrown = null;
try {
task.run();
}
catch (RuntimeException x) {
thrown = x; throw x;
}
catch (Error x) {
thrown = x; throw x;
}
catch (Throwable x) {
thrown = x; throw new Error(x);
}
finally {
//执行后(子类实现)
afterExecute(task, thrown); //这里就考验catch和finally的执行顺序了,因为要以thrown为参数
}
}
finally {
task = null; //task置为null
w.completedTasks++; //完成任务数+1
w.unlock(); //解锁
}
} completedAbruptly = false;
}
finally {
//处理worker的退出
processWorkerExit(w, completedAbruptly);
}
}
runWorker(Worker w)
执行流程:
1、Worker线程启动后,通过Worker类的run()方法调用runWorker(this)
2、执行任务之前,首先worker.unlock(),将AQS的state置为0,允许中断当前worker线程
3、开始执行firstTask,调用task.run(),在执行任务前会上锁wroker.lock(),在执行完任务后会解锁,为了防止在任务运行时被线程池一些中断操作中断
4、在任务执行前后,可以根据业务场景自定义beforeExecute() 和 afterExecute()方法
5、无论在beforeExecute()、task.run()、afterExecute()发生异常上抛,都会导致worker线程终止,进入processWorkerExit()处理worker退出的流程
6、如正常执行完当前task后,会通过getTask()从阻塞队列中获取新任务,当队列中没有任务,且获取任务超时,那么当前worker也会进入退出流程
5、getTask() -- 获取任务
/**
* Performs blocking or timed wait for a task, depending on
* current configuration settings, or returns null if this worker
* must exit because of any of: 以下情况会返回null
* 1. There are more than maximumPoolSize workers (due to
* a call to setMaximumPoolSize).
* 超过了maximumPoolSize设置的线程数量(因为调用了setMaximumPoolSize())
* 2. The pool is stopped.
* 线程池被stop
* 3. The pool is shutdown and the queue is empty.
* 线程池被shutdown,并且workQueue空了
* 4. This worker timed out waiting for a task, and timed-out
* workers are subject to termination (that is,
* {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
* both before and after the timed wait.
* 线程等待任务超时
*
* @return task, or null if the worker must exit, in which case
* workerCount is decremented
* 返回null表示这个worker要结束了,这种情况下workerCount-1
*/
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out? /**
* 外层循环
* 用于判断线程池状态
*/
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c); // Check if queue empty only if necessary.
/**
* 对线程池状态的判断,两种情况会workerCount-1,并且返回null
* 线程池状态为shutdown,且workQueue为空(反映了shutdown状态的线程池还是要执行workQueue中剩余的任务的)
* 线程池状态为stop(shutdownNow()会导致变成STOP)(此时不用考虑workQueue的情况)
*/
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount(); //循环的CAS减少worker数量,直到成功
return null;
} boolean timed; // Are workers subject to culling?
// 是否需要定时从workQueue中获取 /**
* 内层循环
* 要么break去workQueue获取任务
* 要么超时了,worker count-1
*/
for (;;) {
int wc = workerCountOf(c);
timed = allowCoreThreadTimeOut || wc > corePoolSize; //allowCoreThreadTimeOut默认为false
//如果allowCoreThreadTimeOut为true,说明corePoolSize和maximum都需要定时 //如果当前执行线程数<maximumPoolSize,并且timedOut 和 timed 任一为false,跳出循环,开始从workQueue获取任务
if (wc <= maximumPoolSize && ! (timedOut && timed))
break; /**
* 如果到了这一步,说明要么线程数量超过了maximumPoolSize(可能maximumPoolSize被修改了)
* 要么既需要计时timed==true,也超时了timedOut==true
* worker数量-1,减一执行一次就行了,然后返回null,在runWorker()中会有逻辑减少worker线程
* 如果本次减一失败,继续内层循环再次尝试减一
*/
if (compareAndDecrementWorkerCount(c))
return null; //如果减数量失败,再次读取ctl
c = ctl.get(); // Re-read ctl //如果线程池运行状态发生变化,继续外层循环
//如果状态没变,继续内层循环
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
} try {
//poll() - 使用 LockSupport.parkNanos(this, nanosTimeout) 挂起一段时间,interrupt()时不会抛异常,但会有中断响应
//take() - 使用 LockSupport.park(this) 挂起,interrupt()时不会抛异常,但会有中断响应
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : //大于corePoolSize
workQueue.take(); //小于等于corePoolSize //如获取到了任务就返回
if (r != null)
return r; //没有返回,说明超时,那么在下一次内层循环时会进入worker count减一的步骤
timedOut = true;
}
/**
* blockingQueue的take()阻塞使用LockSupport.park(this)进入wait状态的,对LockSupport.park(this)进行interrupt不会抛异常,但还是会有中断响应
* 但AQS的ConditionObject的await()对中断状态做了判断,会报告中断状态 reportInterruptAfterWait(interruptMode)
* 就会上抛InterruptedException,在此处捕获,重新开始循环
* 如果是由于shutdown()等操作导致的空闲worker中断响应,在外层循环判断状态时,可能return null
*/
catch (InterruptedException retry) {
timedOut = false; //响应中断,重新开始,中断状态会被清除
}
}
}
getTask()
执行流程:
1、首先判断是否可以满足从workQueue中获取任务的条件,不满足return null
A、线程池状态是否满足:
(a)shutdown状态 + workQueue为空 或 stop状态,都不满足,因为被shutdown后还是要执行workQueue剩余的任务,但workQueue也为空,就可以退出了
(b)stop状态,shutdownNow()操作会使线程池进入stop,此时不接受新任务,中断正在执行的任务,workQueue中的任务也不执行了,故return null返回
B、线程数量是否超过maximumPoolSize 或 获取任务是否超时
(a)线程数量超过maximumPoolSize可能是线程池在运行时被调用了setMaximumPoolSize()被改变了大小,否则已经addWorker()成功不会超过maximumPoolSize
(b)如果 当前线程数量>corePoolSize,才会检查是否获取任务超时,这也体现了当线程数量达到maximumPoolSize后,如果一直没有新任务,会逐渐终止worker线程直到corePoolSize
2、如果满足获取任务条件,根据是否需要定时获取调用不同方法:
A、workQueue.poll():如果在keepAliveTime时间内,阻塞队列还是没有任务,返回null
B、workQueue.take():如果阻塞队列为空,当前线程会被挂起等待;当队列中有任务加入时,线程被唤醒,take方法返回任务
3、在阻塞从workQueue中获取任务时,可以被interrupt()中断,代码中捕获了InterruptedException,重置timedOut为初始值false,再次执行第1步中的判断,满足就继续获取任务,不满足return null,会进入worker退出的流程
6、processWorkerExit() -- worker线程退出
/**
* Performs cleanup and bookkeeping for a dying worker. Called
* only from worker threads. Unless completedAbruptly is set,
* assumes that workerCount has already been adjusted to account
* for exit. This method removes thread from worker set, and
* possibly terminates the pool or replaces the worker if either
* it exited due to user task exception or if fewer than
* corePoolSize workers are running or queue is non-empty but
* there are no workers.
*
* @param w the worker
* @param completedAbruptly if the worker died due to user exception
*/
private void processWorkerExit(Worker w, boolean completedAbruptly) {
/**
* 1、worker数量-1
* 如果是突然终止,说明是task执行时异常情况导致,即run()方法执行时发生了异常,那么正在工作的worker线程数量需要-1
* 如果不是突然终止,说明是worker线程没有task可执行了,不用-1,因为已经在getTask()方法中-1了
*/
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted 代码和注释正好相反啊
decrementWorkerCount(); /**
* 2、从Workers Set中移除worker
*/
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks; //把worker的完成任务数加到线程池的完成任务数
workers.remove(w); //从HashSet<Worker>中移除
} finally {
mainLock.unlock();
} /**
* 3、在对线程池有负效益的操作时,都需要“尝试终止”线程池
* 主要是判断线程池是否满足终止的状态
* 如果状态满足,但还有线程池还有线程,尝试对其发出中断响应,使其能进入退出流程
* 没有线程了,更新状态为tidying->terminated
*/
tryTerminate(); /**
* 4、是否需要增加worker线程
* 线程池状态是running 或 shutdown
* 如果当前线程是突然终止的,addWorker()
* 如果当前线程不是突然终止的,但当前线程数量 < 要维护的线程数量,addWorker()
* 故如果调用线程池shutdown(),直到workQueue为空前,线程池都会维持corePoolSize个线程,然后再逐渐销毁这corePoolSize个线程
*/
int c = ctl.get();
//如果状态是running、shutdown,即tryTerminate()没有成功终止线程池,尝试再添加一个worker
if (runStateLessThan(c, STOP)) {
//不是突然完成的,即没有task任务可以获取而完成的,计算min,并根据当前worker数量判断是否需要addWorker()
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize; //allowCoreThreadTimeOut默认为false,即min默认为corePoolSize //如果min为0,即不需要维持核心线程数量,且workQueue不为空,至少保持一个线程
if (min == 0 && ! workQueue.isEmpty())
min = 1; //如果线程数量大于最少数量,直接返回,否则下面至少要addWorker一个
if (workerCountOf(c) >= min)
return; // replacement not needed
} //添加一个没有firstTask的worker
//只要worker是completedAbruptly突然终止的,或者线程数量小于要维护的数量,就新添一个worker线程,即使是shutdown状态
addWorker(null, false);
}
}
processWorkerExit(Worker w, boolean completedAbruptly)
参数:
worker: 要结束的worker
completedAbruptly: 是否突然完成(是否因为异常退出)
执行流程:
1、worker数量-1
A、如果是突然终止,说明是task执行时异常情况导致,即run()方法执行时发生了异常,那么正在工作的worker线程数量需要-1
B、如果不是突然终止,说明是worker线程没有task可执行了,不用-1,因为已经在getTask()方法中-1了
2、从Workers Set中移除worker,删除时需要上锁mainlock
3、tryTerminate():在对线程池有负效益的操作时,都需要“尝试终止”线程池,大概逻辑:
判断线程池是否满足终止的状态
A、如果状态满足,但还有线程池还有线程,尝试对其发出中断响应,使其能进入退出流程
B、没有线程了,更新状态为tidying->terminated
4、是否需要增加worker线程,如果线程池还没有完全终止,仍需要保持一定数量的线程
线程池状态是running 或 shutdown
A、如果当前线程是突然终止的,addWorker()
B、如果当前线程不是突然终止的,但当前线程数量 < 要维护的线程数量,addWorker()
故如果调用线程池shutdown(),直到workQueue为空前,线程池都会维持corePoolSize个线程,然后再逐渐销毁这corePoolSize个线程
参考资料:
JUC源码分析-线程池-ThreadPoolExecutor
Java线程池使用和分析(二) - execute()原理的更多相关文章
- Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理
相关文章目录: Java线程池ThreadPoolExecutor使用和分析(一) Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理 Java线程池Thr ...
- Java线程池使用和分析(一)
线程池是可以控制线程创建.释放,并通过某种策略尝试复用线程去执行任务的一种管理框架,从而实现线程资源与任务之间的一种平衡. 以下分析基于 JDK1.7 以下是本文的目录大纲: 一.线程池架构 二.Th ...
- Java线程池详解(二)
一.前言 在总结了线程池的一些原理及实现细节之后,产出了一篇文章:Java线程池详解(一),后面的(一)是在本文出现之后加上的,而本文就成了(二).因为在写完第一篇关于java线程池的文章之后,越发觉 ...
- java线程池源码分析
我们在关闭线程池的时候会使用shutdown()和shutdownNow(),那么问题来了: 这两个方法又什么区别呢? 他们背后的原理是什么呢? 线程池中线程超过了coresize后会怎么操作呢? 为 ...
- Java并发编程:Java线程池核心ThreadPoolExecutor的使用和原理分析
目录 引出线程池 Executor框架 ThreadPoolExecutor详解 构造函数 重要的变量 线程池执行流程 任务队列workQueue 任务拒绝策略 线程池的关闭 ThreadPoolEx ...
- 【图灵学院10】高并发之java线程池源码分析
1. 提纲 1)线程池的模块结构 2)示例&原理解析 2. 问题 1)线程池包含哪些东西 2)线程池的运作原理 3)调度线程池的运作原理 4)线程池怎么实现FixRate,FixDelay,他 ...
- java线程池框架源代码分析
相关类Executor,Executors.AbstractExecutorService.ExecutorService Executor:整个线程池运行者框架的顶层接口. 定义了一个execute ...
- Java线程池ThreadPoolExecutor使用和分析(三) - 终止线程池原理
相关文章目录: Java线程池ThreadPoolExecutor使用和分析(一) Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理 Java线程池Thr ...
- Java线程池ThreadPoolExecutor使用和分析(一)
相关文章目录: Java线程池ThreadPoolExecutor使用和分析(一) Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理 Java线程池Thr ...
随机推荐
- Python从入门到放弃之迭代器
迭代器是Python2.1中新加入的接口(PEP 234),说明如下: The iterator provides a 'get next value' operation that produces ...
- 【排序算法】归并排序算法 Java实现
归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用. 基本思想 可以将一组数组分成A,B两组 依次类推,当分出来的小组只有一 ...
- Android 自定义 View 圆形进度条总结
Android 自定义圆形进度条总结 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 微信公众号:牙锅子 源码:CircleProgress 文中如有纰漏,欢迎大家留言指出. 最近 ...
- Javaweb之Jsp
1. JSP是什么? JSP全称Java Server Pages,是一种动态网页开发技术.它使用JSP标签在HTML网页中插入Java代码.标签通常以<%开头以%>结束. 2. JSP带 ...
- ELK日志套件安装与使用
1.ELK介绍 ELK不是一款软件,而是elasticsearch+Logstash+kibana三款开源软件组合而成的日志收集处理套件,堪称神器.其中Logstash负责日志收集,elast ...
- Springboot启动源码详解
我们开发任何一个Spring Boot项目,都会用到如下的启动类 @SpringBootApplication public class Application { public static voi ...
- java算法 蓝桥杯(题+答案) 压缩变换
10.压缩变换 (程序设计) 小明最近在研究压缩算法.他知道,压缩的时候如果能够使得数值很小,就能通过熵编码得到较高的压缩比.然而,要使数值很小是一个挑战. 最近,小明需要压缩一些正整数的序列,这些 ...
- &&运算符,三木运算符与React的条件渲染
在使用react框架的时候中往往会遇到需要条件渲染的情形,这时候,许多人会设想采用if语句来实现,比如下面,当满足条件condition时,conditonRender渲染组件ComponentA,当 ...
- Node.js web快速入门 -- KoaHub.js
介绍 KoaHub.js -- 基于 Koa.js 平台的 Node.js web 快速开发框架.可以直接在项目里使用 ES6/7(Generator Function, Class, Async & ...
- 1432: [ZJOI2009]Function
1432: [ZJOI2009]Function Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 710 Solved: 528[Submit][Stat ...