matplotlib在python中一般会与numpy同时出现,解决一些科学计算和数据的可视化问题。

matplotlib其实就是matlib在python中的实现,因此不会有太大的难度,而由于python自身在处理大数据方面的优势,使python和hadoop、hive甚至spark都有很好的结合,那么Python中的

可视化会更加的重要。

1、python实现一个正弦函数

  plt.title(u'sin函数图',fontproperties=font)  #设置标题

 plt.xlabel(u'x轴', fontproperties=font)       #设置x轴注释和字体

  plt.ylabel(u'y轴', fontproperties=font)       #设置y注释和字体

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x=np.arange(-np.pi,np.pi,0.01)
>>> y=np.sin(x)
>>> plt.plot(x,y,'g')
[<matplotlib.lines.Line2D object at 0x0000000008FB7F98>]
>>> plt.show()

numpy中集成了python中的math模块,因此math中的方法numpy也可以调用。

2、坐标区间的设置

(1)没有设置x y 的区间

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x=np.arange(-5,5,0.01)
>>> y=x**3
>>> plt.plot(x,y)
[<matplotlib.lines.Line2D object at 0x00000000090288D0>]
>>> plt.show()

 

(2)对x y 轴的区间进行设置

    对x y 的取值区间进行了设置   xlim(xmin,xmax)用来设置x轴的最大最小区间    ylim(ymin,ymax)设置y轴的最大最小区间

 >>> x=np.arange(-5,5,0.01)
>>> y=x**3
>>> plt.xlim(-6,6)
(-6, 6)
>>> plt.ylim(-200,200)
(-200, 200)
>>> plt.plot(x,y)
[<matplotlib.lines.Line2D object at 0x000000000BCA6048>]
>>> plt.show()

3、设置网格线

grid()提供网格线的选项,在plot()加上grid(True)选项就能显示网格线。

>>> x=np.arange(-5,5,0.01)
>>> y=x**3
>>> plt.xlim(-6,6)
(-6, 6)
>>> plt.ylim(-200,200)
(-200, 200)
>>> plt.plot(x,y)
[<matplotlib.lines.Line2D object at 0x000000000C193AC8>]
>>> plt.grid(True)
>>> plt.show()

python可视化--matplotlib的更多相关文章

  1. Python可视化----------matplotlib.pylot

    1 >>> import matplotlib.pyplot as plt 2 >>> plt.axis([0,5,0,20]) 3 [0, 5, 0, 20] 4 ...

  2. Python可视化库

    转自小小蒲公英原文用Python可视化库 现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策.那么数据有什么价值呢?用什么样的手段才能把数 ...

  3. Python可视化学习(1):Matplotlib的配置

    Matplotlib是一个优秀的可视化库,它提供了丰富的接口,让Python的可视化落地显得非常容易上手.本系列是本人学习python可视化的学习笔记,主要用于监督自己的学习进度,同时也希望和相关的博 ...

  4. 高效使用 Python 可视化工具 Matplotlib

    Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplo ...

  5. Python可视化库-Matplotlib使用总结

    在做完数据分析后,有时候需要将分析结果一目了然地展示出来,此时便离不开Python可视化工具,Matplotlib是Python中的一个2D绘图工具,是另外一个绘图工具seaborn的基础包 先总结下 ...

  6. Python 可视化工具 Matplotlib

    英文出处:Chris Moffitt. Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时 ...

  7. Python调用matplotlib实现交互式数据可视化图表案例

    交互式的数据可视化图表是 New IT 新技术的一个应用方向,在过去,用户要在网页上查看数据,基本的实现方式就是在页面上显示一个表格出来,的而且确,用表格的方式来展示数据,显示的数据量会比较大,但是, ...

  8. Python数据可视化matplotlib和seaborn

    Python在数据科学中的地位,不仅仅是因为numpy, scipy, pandas, scikit-learn这些高效易用.接口统一的科学计算包,其强大的数据可视化工具也是重要组成部分.在Pytho ...

  9. Pycon 2017: Python可视化库大全

    本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...

随机推荐

  1. elasticsearch系列(二) esrally压测

    环境准备 linux centOS(工作环境) python3.4及以上 pip3 JDK8 git1.9及以上 gradle2.13级以上 准备过程中的坑 这些环境准备没什么太大问题,都是wget下 ...

  2. 取消关联svn

    Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Folder\shell\DeleteSVN] @= ...

  3. 谈谈对Spring IOC的理解(转载)

    学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...

  4. 在Caffe上运行Cifar10示例

    准备数据集 在终端上运行以下指令: cd caffe/data/cifar10 ./get_cifar10.sh cd caffe/examples/cifar10 ./create_cifar10. ...

  5. CI 图片上传路径问题的解决

    很久没有用CI了,新公司需要用ci ,图片上传的功能,我都搞半天,伤心 1. 要看源码,upload.php里do_upload()是上传的主要函数. public function do_uploa ...

  6. Charles安装破解及使用

    摘要 在发开过程中,追踪请求和监控请求与返回数据是我们经常会需要的一个需求,在Mac端,Charles是一款非常易用的抓包工具. Mac端的优秀抓包工具--Charles使用 一.简介 Charles ...

  7. servlet的过滤器的doFilter()

    doFilter中的chain.doFilter(res,req);//Filter 只是链式处理,请求依然转发到目的地址 意思就说过滤器只是一个关口,如果符合条件的请求会被过滤器拦截下来,然后进行处 ...

  8. 如何自学成为一个WEB前端

    WEB前端是做什么的? 那些什么高大上的介绍作者就略过了,简单来说就是做网页的,我们上网浏览的网站界面就是WEB前端工程师做的. 在互联网迅速发展的近几年,你上网冲浪的时候是不是感觉WEB网站越来越漂 ...

  9. B507实验室打印机连接方法

    一.准备工具 实验室打印机内网IP地址:172.16.135.41 ,这个地址要看具体的打印机地址(可能会更换). 从实验室QQ群(土匪窝)上下载打印机驱动,如下图所示. 3. 非常重要的事情:请链接 ...

  10. Hibernate composite key

    有两种方法来map composite key. 第一种用@IdClass第二种用@Embeddable,参考链接: http://stackoverflow.com/questions/358503 ...