bzoj1001(对偶图最短路)
1001: [BeiJing2006]狼抓兔子
Description
Input
Output
输出一个整数,表示参与伏击的狼的最小数量.
Sample Input
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
Sample Output
显然是个最大流问题。
边数达到了10^6级别,显然用dinic算法会TLE
对于一个平面图来说,当然用对偶图的最短路来求最小割(最大流)
SPFA转移的时候注意判断边界情况
应该要开longlong才能过
上代码:
/**************************************************************
Problem: 1001
User: xialan
Language: C++
Result: Accepted
Time:5648 ms
Memory:56480 kb
****************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<climits>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
typedef long long LL;
inline LL read(){
LL x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){
x=x*+ch-'';
ch=getchar();
}
return x;
}
struct edge{
int x,y;bool f;
};
queue<edge>q;
const int M=;
const LL MM=(LL)1e15;
LL dis[M][M][],hang[M][M],lie[M][M],xie[M][M],vis[M][M][];
int main(){
int n,m;
scanf("%d%d",&n,&m);
rep(i,,n)rep(j,,m-)hang[i][j]=read();
rep(i,,n-)rep(j,,m)lie[i][j]=read();
rep(i,,n-)rep(j,,m-)xie[i][j]=read();
rep(i,,n-)rep(j,,m-)dis[i][j][]=dis[i][j][]=MM;
memset(vis,,sizeof(vis));
rep(i,,m-){
dis[][i][]=hang[][i];
vis[][i][]=;
q.push((edge){,i,});
}
dis[][m-][]=min(hang[][m-],lie[][m]);
q.push((edge){,m-,});
vis[][m-][]=;
rep(i,,n-){
dis[i][m-][]=lie[i][m];
vis[i][m-][]=;
q.push((edge){i,m-,});
} while(!q.empty()){
edge u=q.front();q.pop();vis[u.x][u.y][u.f]=;
if(u.f){
if(u.x>){
if(dis[u.x-][u.y][]>dis[u.x][u.y][]+hang[u.x][u.y]){
dis[u.x-][u.y][]=dis[u.x][u.y][]+hang[u.x][u.y];
if(!vis[u.x-][u.y][]){
vis[u.x-][u.y][]=;
q.push((edge){u.x-,u.y,});
}
}
}
if(u.y<m-){
if(dis[u.x][u.y+][]>dis[u.x][u.y][]+lie[u.x][u.y+]){
dis[u.x][u.y+][]=dis[u.x][u.y][]+lie[u.x][u.y+];
if(!vis[u.x][u.y+][]){
vis[u.x][u.y+][]=;
q.push((edge){u.x,u.y+,});
}
}
}
if(dis[u.x][u.y][]>dis[u.x][u.y][]+xie[u.x][u.y]){
dis[u.x][u.y][]=dis[u.x][u.y][]+xie[u.x][u.y];
if(!vis[u.x][u.y][]){
vis[u.x][u.y][]=;
q.push((edge){u.x,u.y,});
}
}
}
else{
if(u.x<n-){
if(dis[u.x+][u.y][]>dis[u.x][u.y][]+hang[u.x+][u.y]){
dis[u.x+][u.y][]=dis[u.x][u.y][]+hang[u.x+][u.y];
if(!vis[u.x+][u.y][]){
vis[u.x+][u.y][]=;
q.push((edge){u.x+,u.y,});
}
}
}
if(u.y>){
if(dis[u.x][u.y-][]>dis[u.x][u.y][]+lie[u.x][u.y]){
dis[u.x][u.y-][]=dis[u.x][u.y][]+lie[u.x][u.y];
if(!vis[u.x][u.y-][]){
vis[u.x][u.y-][]=;
q.push((edge){u.x,u.y-,});
}
}
}
if(dis[u.x][u.y][]>dis[u.x][u.y][]+xie[u.x][u.y]){
dis[u.x][u.y][]=dis[u.x][u.y][]+xie[u.x][u.y];
if(!vis[u.x][u.y][]){
vis[u.x][u.y][]=;
q.push((edge){u.x,u.y,});
}
}
}
}
LL MIN=INT_MAX;
rep(i,,n-)MIN=min(MIN,dis[i][][]+lie[i][]);
rep(i,,m-)MIN=min(MIN,dis[n-][i][]+hang[n][i]);
printf("%lld\n",MIN);
return ;
}
bzoj1001(对偶图最短路)的更多相关文章
- 【BZOJ1001】[BeiJing2006]狼抓兔子 对偶图最短路
[BZOJ1001][BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子 ...
- BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路
问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...
- 【bzoj1001】[BeiJing2006]狼抓兔子 最小割+对偶图+最短路
题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
- 【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路
题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交 ...
- [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】
题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...
- BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)
题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...
- 【BZOJ2007】[Noi2010]海拔 对偶图最短路
[BZOJ2007][Noi2010]海拔 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看 ...
- BZOJ 2007 海拔(平面图最小割转对偶图最短路)
首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...
- [BZOJ2007][NOI2010]海拔(对偶图最短路)
首先确定所有点的海拔非0即1,问题转化成裸的平面图最小割问题,进而转化成对偶图最短路(同BZOJ1002). 这题的边是有向的,所以所有边顺时针旋转90度即可. 如下图(S和T的位置是反的). #in ...
- [BJOI2006]狼抓兔子——最小割转对偶图最短路
其实这个题直接Dinic跑最小割可过. (小优化是: 无向图建网络流,一条边不用建成4条,可以正反容量都是边权即可.完全等价 ) [无效]网络流之转换对偶图 一个巧妙的事情是,如果建边合适的话,最小割 ...
随机推荐
- Block使用的简单总结
一.Block简单的使用 1.block当作参数来传递 如下定义一个没有返回值无参数的block,并把它作为参数,让系统调用,注意:这里是系统在调用,不是我们调用 那么为什么需要把block当作参数去 ...
- Cookie同域,跨域单点登录
Cookie 同域单点登录 最近在做一个单点登录的系统整合项目,之前我们使用控件实现单点登录(以后可以介绍一下).但现在为了满足客户需求,在不使用控件情况下实现单点登录,先来介绍一下单点登录. 单点登 ...
- python contextlib 上下文管理器
1.with操作符 在python中读写文件,可能需要这样的代码 try-finally读写文件 file_text = None try: file_text = open('./text', 'r ...
- Spring ——简介及环境搭建跑通Hello
Spring Spring是一个开放源代码的设计层面框架,他解决的是业务逻辑层和其他各层的松耦合问题,因此它将面向接口的编程思想贯穿整个系统应用.是为了解决企业应用程序开发复杂性而创建的.框架的主要优 ...
- PHP-FPM进程池探秘
PHP 支持多进程而不支持多线程:PHP-FPM 在进程池中运行多个子进程并发处理所有连接请求.通过 ps 查看PHP-FPM进程池(pm.start_servers = 2)状态如下: root@d ...
- RoportNG报表显示中文乱码和TestNG显示中文乱码实力解决办法
最近在进军测试自动化框架学习阶段,但无意间总是会伴随小问题的困扰,比如中文乱码,而导致显示总是不舒服,个人觉得,就一定要解决,似乎有点点强迫症.所以遇到RoportNG报表显示中文乱码和TestNG显 ...
- RichEditBox 使用自定义菜单
老周:当RichEditBox控件的上下文菜单即将弹出时,会引发ContextMenuOpening事件,我们需要处理该事件,并且将e.Handled属性设置为true,这样才能阻止默认上下文菜单的弹 ...
- C#命令行解析工具
我将告诉大家两个方法去获取C#输入的命令行参数. 第一个方法: 林选臣大神写的,他的方法很简单. 首先复制两个类到项目 public class CommandLineArgumentParser { ...
- Bootstrap 禁用滚动条
Bootstrap中禁用滚动条的方法 逻辑: 当点击弹窗按钮后,js会为body元素添加一个modal-open的类,该类主要内容如下 .modal-open .modal { overflow-x: ...
- 关于NOIP2014“无线网络发射器选址”一题的衍生题目的思考及思维方向
无线网络发射器选址 题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形 ...