【论文:麦克风阵列增强】An alternative approach to linearly constrained adaptive beamforming
作者:桂。
时间:2017-06-03 21:46:59
链接:http://www.cnblogs.com/xingshansi/p/6937259.html
原文下载:http://pan.baidu.com/s/1hs5kgh2
前言
1982年的文章了,主要是基于GSC框架的麦克风阵列增强,梳理一下文章的思路。这篇文章主要有两点特色:
1)在Frost’s algorithm基础上,进行了理论扩展;
2)论述了基于麦克风阵列的GSC框架.
一、理论回顾
假设噪声为加性:

其中s是desired signal,n 是noise.m为第m个麦克风,m∈[1,M].
加权的beamforming可以写为

滤波器的抽头长度为2K+1.对应的框架为:

上面的定义式可以进一步简化,根据

输出为

实现结构知道了,下面就是定义目标函数,然后就是理论的落地,具体可以参考Frost’s algorithm。细节上的改动可以看原文,个人觉得对于实际应用影响可以忽略。
二、GSC框架
GSC的理论推导之前有分析。它本质上也是LCMV的应用,不同之处在于:假设C为M×L的矩阵:L个线性约束条件。对于M个变量的方程组,对应唯一解最多有M个方程,即:对于L个线性约束来讲,我们仍可以继续利用剩下的M-L个自由度进行约束,使得结果更加符合需求,这便是GSC的意义。可以说GSC是MVDR的强化版,但效果是不是一定最优难以保证,例如MVDR是最优权重,而GSC上支的增强向量、下支的Block矩阵通常直接给定,只是优化LMS中的权重。
GSC的描述:
The GSC algorithm is comprised of three building blocks. The first is a fixed beamformer, which satisfies the desired constraint. The second is a blocking matrix, which produces noise-only reference signals by blocking the desired signal (e.g., by subtracting pairs of time-aligned signals). The third is an unconstrained LMS-type algorithm that attempts to cancel the noise in the fixed beamformer output.

简单说一下实现思路:仍然可以按频点处理,首先是延迟t的估计,然后是对齐,上支是叠加/下支是block,这样一来上支看成是目标信号带有噪声,下支看成是噪声,从而利用自适应滤波的思想对上支信号进行降噪。假设麦克风为M个,滤波的抽头系数为2K+1,借助梯度下降的思想,这样便完成了理论的落地,实现了工程应用。具体的思路与Frost's algorithm中的思路基本一致,不再赘述。
参考
- Griffiths L, Jim C W. An alternative approach to linearly constrained adaptive beamforming[J]. IEEE Transactions on antennas and propagation, 1982, 30(1): 27-34.
【论文:麦克风阵列增强】An alternative approach to linearly constrained adaptive beamforming的更多相关文章
- 【论文:麦克风阵列增强】An Algorithm For Linearly Constrained Adaptive Array Processing
作者:桂. 时间:2017-06-03 15:06:37 链接:http://www.cnblogs.com/xingshansi/p/6937635.html 原文链接:http://pan.ba ...
- 【论文:麦克风阵列增强】Microphone Array Post-Filtering For Non-Stationary Noise Suppression
作者:桂. 时间:2017-06-08 08:01:41 链接:http://www.cnblogs.com/xingshansi/p/6957027.html 原文链接:http://pan.ba ...
- 【麦克风阵列增强】Delay and sum beamforming
作者:桂. 时间:2017-06-03 15:40:33 链接:http://www.cnblogs.com/xingshansi/p/6937576.html 前言 本文主要记录麦克风阵列的几个基 ...
- 【论文:麦克风阵列增强】Signal Enhancement Using Beamforming and Nonstationarity with Applications to Speech
作者:桂. 时间:2017-06-06 13:25:58 链接:http://www.cnblogs.com/xingshansi/p/6943833.html 论文原文:http://pan.bai ...
- 【论文:麦克风阵列增强】Speech Enhancement Based on the General Transfer Function GSC and Postfiltering
作者:桂. 时间:2017-06-06 16:10:47 链接:http://www.cnblogs.com/xingshansi/p/6951494.html 原文链接:http://pan.ba ...
- 基于麦克风阵列的声源定位算法之GCC-PHAT
目前基于麦克风阵列的声源定位方法大致可以分为三类:基于最大输出功率的可控波束形成技术.基于高分辨率谱图估计技术和基于声音时间差(time-delay estimation,TDE)的声源定位技术. 基 ...
- 麦克风阵列波束形成之DSB原理与实现
语音识别有近场和远场之分,且很多场景下都会用到麦克风阵列(micphone array).所谓麦克风阵列是一组位于空间不同位置的麦克风按一定的形状规则布置形成的阵列,是对空间传播声音信号进行空间采样的 ...
- 论文翻译:2021_A Perceptually Motivated Approach for Low-complexity, Real-time Enhancement of Fullband Speech
论文地址:一种低复杂度实时增强全频带语音的感知激励方法 论文代码 引用格式:A Perceptually Motivated Approach for Low-complexity, Real-tim ...
- [论文阅读] A Discriminative Feature Learning Approach for Deep Face Recognition (Center Loss)
原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每 ...
随机推荐
- sass学习入门篇(三)
这章我们讲“嵌套”,嵌套包括两种:一,选择器嵌套.二是属性的嵌套.一般用选择器嵌套居多 一,选择器嵌套:指的是在一个选择器中嵌套另一个选择器来实现继承.使用&表示父元素选择器 li{ floa ...
- DFB系列 之 SetCooperativeLevel协作级别
1. 函数原型解析 函数声明 function SetCooperativeLevel(hWnd: HWND; dwFlags: DWORD): HResult; stdcall; 设置指定的IDir ...
- 【原创】Android 5.0 BLE低功耗蓝牙从设备应用
如果各位觉得有用,转载+个出处. 现如今安卓的低功耗蓝牙应用十分普遍了,智能手环.手表遍地都是,基本都是利用BLE通信来交互数据.BLE基本在安卓.IOS两大终端设备上都有很好支持,所以有很好发展前景 ...
- Hadoop 核心架构
Hadoop 由许多元素构成.其最底部是 Hadoop Distributed File System(HDFS),它存储 Hadoop 集群中所有存储节点上的文件.HDFS(对于本文)的上一层是Ma ...
- redis集群安装部署
(要让集群正常工作至少需要3个主节点,在这里我们要创建6个redis节点,其中三个为主节点,三个为从节点,对应的redis节点的ip和端口对应关系如下) 192.168.1.160:7000 192. ...
- [刷题]算法竞赛入门经典(第2版) 4-1/UVa1589 - Xiangqi
书上具体所有题目:http://pan.baidu.com/s/1hssH0KO 代码:(Accepted,0 ms) //UVa1589 #include<iostream> #incl ...
- 使用maven根据JSON文件自动生成Java POJO类(Java Bean)源文件
根据JSON文件自动生成Java POJO类(Java Bean)源文件 本文介绍使用程序jsonschema2pojo来自动生成Java的POJO类源文件,本文主要使用maven,其他构建工具请参考 ...
- OGNL表达式与EL表达式
一.OGNL表达式 a)什么是OGNL? OGNL是Object-Graph Navigation Language的缩写,它是一种功能强大的表达式语言, 通过它简单一致的表达式语法.主要功能: ...
- sublime Text3 新建文件时定义模块
开发的过程中有很多的东西,不需要每次编写,如果每次编写这样会很蛋疼,所以sublime 提供了一个牛逼的插件SublimeTmpl, 这个插件可以定义自己新建的模块. sublimeTmpl 安装 1 ...
- php jquery+ajax写批量删除
为了美观,我还是引入了bootstrap的模态框,我引入的是自己的数据库 library中的一张表 名为:maninfo表 是一张个人信息表 表的加载我就不写了,比较简单, 大概写一下需要的按 ...