这篇论文思路简单、易实现、效果好,是一篇难得的佳作。从实现的角度理解,就是做了以下两个替换:

  1. 将线性卷积替换为多层感知机(某种程度上,线性卷积可以认为识一层感知机)。
  2. 将全连接层用global average pooling layer替换。

下面我们就来分析引入上述两个替换的妙处。首先分析第一个替换的妙处,替换的效果(图示如下)

论文中提到“The linear convolution is sufficient for abstraction when the instances of the latent concepts are linearly separable.”,然而现实太复杂,the instances of the latent concepts通常不是线性可分的。在这种情况下,通常有两种做法:一是,引入大量的linear convolution(以体量应对复杂现实);二是,干脆寻找一个能够模拟任意复杂情形的“参数化函数”(以灵活性应对复杂现实)。

可以预见,如果你计算、存储资源充裕的话,你可以采取简单暴力的第一种情形;通常情况下,计算、存储资源受限,因此第二种做法更加接近现实一点(也更容易将算法植入到计算、存储资源有限的移动设备上,如手机)。下面的问题就是寻找所需的“参数化函数”。庆幸的是,多层感知机在某种程度上能够满足我们的需求,此外它能够与BP算法完美兼容(这篇论文选择的就是多层感知机)。这样的Mlpconv layer就可以作为深度网络的几个基本block,用以构建深度网络。

在CNN当中,随着层数的加深,我们得到的特征越来越抽象。这种抽象是以组合较低一层抽象特征得到的。从这个角度理解,如果在较低层就能够比之前对应层更抽象的特征,然后整个网络的输出抽象程度将会变得更高,这样高度抽象的特征对于分类、任务迁移都是有极大帮助的。

下面分析第二个替换的妙处

传统的CNN是将最后一层的卷积输出向量化,然后输入到全连接层,全连接层之后是常用的分类损失函数,如softmax。如果最后一层卷积输出特征维度过高、类别较多,那么这一块引入的参数量是很大的,这会造成网络过拟合(还好,目前有一些防止过拟合的手段,如dropout)。

“The idea is to generate one feature map for each corresponding category of the classification task in the last mlpconv layer. Instead of adding fully connected layers on top od the feature maps, we take the advantage of each feature map, and the resulting vector is fed directly into the softmax layer”,这样做的好处是,直接在类别与feature maps之间建立了联系,“The features maps can be easily interpreted as categories confidence maps”。此外,这里没有引入要学习的参数,也间接起到了防止过拟合的效果。

在Caffe框架下实现上述网络是一个很简单的事情,以在cifar10上的网络结果为例

layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
blobs_lr:
blobs_lr:
weight_decay: .
weight_decay: .
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers {
name: "cccp1"
type: CONVOLUTION
bottom: "conv1"
top: "cccp1"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp1"
type: RELU
bottom: "cccp1"
top: "cccp1"
}
layers {
name: "cccp2"
type: CONVOLUTION
bottom: "cccp1"
top: "cccp2"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp2"
type: RELU
bottom: "cccp2"
top: "cccp2"
}

两个kernel_size为1的卷积核实现的就是多层感知机的功能,全部的网络结果代码如下

name: "CIFAR10_full"
layers {
name: "cifar"
type: DATA
top: "data"
top: "label"
data_param {
source: "cifar-train-leveldb"
batch_size:
}
include: { phase: TRAIN }
}
layers {
name: "cifar"
type: DATA
top: "data"
top: "label"
data_param {
source: "cifar-test-leveldb"
batch_size:
}
include: { phase: TEST }
}
layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
blobs_lr:
blobs_lr:
weight_decay: .
weight_decay: .
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers {
name: "cccp1"
type: CONVOLUTION
bottom: "conv1"
top: "cccp1"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp1"
type: RELU
bottom: "cccp1"
top: "cccp1"
}
layers {
name: "cccp2"
type: CONVOLUTION
bottom: "cccp1"
top: "cccp2"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp2"
type: RELU
bottom: "cccp2"
top: "cccp2"
}
layers {
name: "pool1"
type: POOLING
bottom: "cccp2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layers {
name: "drop3"
type: DROPOUT
bottom: "pool1"
top: "pool1"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "conv2"
type: CONVOLUTION
bottom: "pool1"
top: "conv2"
blobs_lr:
blobs_lr:
weight_decay: .
weight_decay: .
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu2"
type: RELU
bottom: "conv2"
top: "conv2"
}
layers {
name: "cccp3"
type: CONVOLUTION
bottom: "conv2"
top: "cccp3"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp3"
type: RELU
bottom: "cccp3"
top: "cccp3"
}
layers {
name: "cccp4"
type: CONVOLUTION
bottom: "cccp3"
top: "cccp4"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp4"
type: RELU
bottom: "cccp4"
top: "cccp4"
}
layers {
name: "pool2"
type: POOLING
bottom: "cccp4"
top: "pool2"
pooling_param {
pool: AVE
kernel_size:
stride:
}
}
layers {
name: "drop6"
type: DROPOUT
bottom: "pool2"
top: "pool2"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "conv3"
type: CONVOLUTION
bottom: "pool2"
top: "conv3"
blobs_lr: .
blobs_lr: .
weight_decay: .
weight_decay: .
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "relu3"
type: RELU
bottom: "conv3"
top: "conv3"
}
layers {
name: "cccp5"
type: CONVOLUTION
bottom: "conv3"
top: "cccp5"
blobs_lr:
blobs_lr:
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp5"
type: RELU
bottom: "cccp5"
top: "cccp5"
}
layers {
name: "cccp6"
type: CONVOLUTION
bottom: "cccp5"
top: "cccp6"
blobs_lr: 0.1
blobs_lr: 0.1
weight_decay:
weight_decay:
convolution_param {
num_output:
group:
kernel_size:
weight_filler {
type: "gaussian"
std: 0.05
}
bias_filler {
type: "constant"
value:
}
}
}
layers {
name: "relu_cccp6"
type: RELU
bottom: "cccp6"
top: "cccp6"
}
layers {
name: "pool3"
type: POOLING
bottom: "cccp6"
top: "pool3"
pooling_param {
pool: AVE
kernel_size:
stride:
}
}
layers {
name: "accuracy"
type: ACCURACY
bottom: "pool3"
bottom: "label"
top: "accuracy"
include: { phase: TEST }
}
layers {
name: "loss"
type: SOFTMAX_LOSS
bottom: "pool3"
bottom: "label"
top: "loss"
}

总结:这篇文章引入的改进网络结构的方式、global average pooling启发了后续很多算法,以后有时间再慢慢分析。

论文笔记 Network In Network的更多相关文章

  1. 论文笔记系列-Neural Network Search :A Survey

    论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesia ...

  2. 论文笔记-Deep Affinity Network for Multiple Object Tracking

    作者: ShijieSun, Naveed Akhtar, HuanShengSong, Ajmal Mian, Mubarak Shah 来源: arXiv:1810.11780v1 项目:http ...

  3. 论文笔记——N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning

    论文地址:https://arxiv.org/abs/1709.06030 1. 论文思想 利用强化学习,对网络进行裁剪,从Layer Removal和Layer Shrinkage两个维度进行裁剪. ...

  4. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  5. 论文笔记: Dual Deep Network for Visual Tracking

    论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. ...

  6. Face Aging with Conditional Generative Adversarial Network 论文笔记

    Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产 ...

  7. 论文《Network in Network》笔记

    论文:Lin M, Chen Q, Yan S. Network In Network[J]. Computer Science, 2013. 参考:关于CNN中1×1卷积核和Network in N ...

  8. 论文笔记 《Maxout Networks》 && 《Network In Network》

    论文笔记 <Maxout Networks> && <Network In Network> 发表于 2014-09-22   |   1条评论 出处 maxo ...

  9. [论文阅读笔记] Structural Deep Network Embedding

    [论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...

  10. [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion

    [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...

随机推荐

  1. jmeter执行case结果插入DB数据优化

    访问初始实现路径:jmeter执行case结果插入DB生成报表和备份记录 借前面实现导入DB数据先说明之前数据的缺点: 第一,若需要依赖接口的数据,会把依赖接口的case统计进去造成数据统计错误.第二 ...

  2. POJ 2411 状态压缩递,覆盖方案数

    无非就是横着放与竖着放,状态中用1表示覆盖,0表示未覆盖. #include <iostream> #include <vector> #include <algorit ...

  3. Atom手动安装插件和模块的解决方案

    最近开始使用Atom编辑器写作.为了预览带LaTeX公式的markdown文档,尝试安装插件markdown-preview-plus,但是总是失败.经过仔细查看错误输出和网上相关问答,发现尽管报错为 ...

  4. Linux(ubuntu)安装MediaWiki

    本篇文档所述步骤,作者完全验证过.一切OK. 作者:http://gaoxingf.blog.51cto.com/612518/188132,Younger Liu 本作品采用知识共享署名-非商业性使 ...

  5. Angular回到顶部按钮指令

    之前的分页代码指令化在线下测试没有问题,到服务器上就不运行了,所以那个先放一放. 今天来把"回到顶部"按钮指令化.首先是页面html: <!--回弹按钮--> < ...

  6. OA办公系统功能真的越全越好?

    4.原文:http://www.jiusi.net/detail/472__776__4000__1.html 关键词:oa系统,OA办公系统 OA办公系统功能真的越全越好? 很多企业在选择OA办公系 ...

  7. 洛谷【P2393】题解

    P2393 [yyy loves Maths II] 原题链接 话说,这题其实方法对了,也蛮水的. 首先方法是一样的,直接扩大忽略精度问题. 其次,我用了c++的函数控制输出小数位数,方法:cout& ...

  8. win10 64位下装Virtual Box安装Linux(centOS)配置联网

    第一步:安装VritualBox 百度"VritualBox"下载安装即可: 第二步:下载Linux镜像系统并安装 这里写出我参照的博客,很详细,我就不累赘了! 原文地址:http ...

  9. Redis入门学习

    一.摘要 二.五种数据类型的基本命令操作 三.Redis连接池 四.普通同步方式 五.事务方式(Transactions) 六.管道(Pipelining) 七.管道中调用事务 八.分布式直连同步调用 ...

  10. anjular中Service、Factory、Provider的使用与js中创建对象的总结

    在学习anjular中Service的使用时,发现和js中的创建对象的方式有一定的联系,所以总结了anjular中Service.Factory.Provider的使用方式与js创建对象的方式 一.先 ...