1. 内容概要

  • Multivariate Linear Regression(多元线性回归)

    • 多元特征
    • 多元变量的梯度下降
    • 特征缩放
  • Computing Parameters Analytically
    • 正规公式(Normal Equation )
    • 正规公式非可逆性(Normal Equation Noninvertibility)

2. 重点&难点

1)多元变量的梯度下降

2) 特征缩放

为什么要特征缩放

首先要清楚为什么使用特征缩放。见下面的例子

  • 特征缩放前



由图可以知道特征缩放前,表示面积的x1变量的值远大于x2,因此J(θ)图像表示就是椭圆的,导致在梯度下降的过程中,收敛速度非常慢。

  • 特征缩放后

对各变量特征缩放后绘制出来的损失函数J(θ)明显收敛更快,这也是为什么需要特征缩放的原因了。

实现方法

  • feature scaling

\[
\begin{equation}
x_i := \frac{x_i}{x_\max - x_\min}
\end{equation}
\]

每个输入值除以(max - min)

  • mean normalization

\[
\begin{equation}
x_i := \frac{x_i - μ_i}{s_i}
\end{equation}
\]

μi: 均值

si: max - min

3) Normal Equation 正规方程式

Normal Equation

\[
\begin{equation}
θ = (X^T·X)^{﹣1}·X·Y
\end{equation}
\]

具体推理过程详见掰开揉碎推导Normal Equation

与梯度下降方法进行比较

梯度下降 正规方程式
需要选择步长α 不需要选择步长α
需要迭代训练很多次 一次都不需要迭代训练
O(kn2) O(n3,计算(XT·X)-1需要花费较长时间
即使数据特征n很大,也可以正常工作 n如果过大,计算会消耗大量时间

4) 正规方程不可逆

当XT·X不可逆时,很显然此时正规方程将不能正常计算,常见原因如下:

  • 冗余特征,在两个特点紧密相关(即它们呈线性关系,例如面积和(长,宽)这两个特征线性相关)
  • 太多的特征(例如:m≤n)。 在这种情况下,可以删除一些特征或使用"regularization"。

补充:

  • A是可逆矩阵的充分必要条件是 |A|≠0

MARSGGBO♥原创







2017-8-2

Andrew Ng机器学习课程笔记--week2(多元线性回归&正规公式)的更多相关文章

  1. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  2. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  3. Andrew Ng机器学习课程笔记(一)之线性回归

    Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...

  4. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

  5. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  6. Andrew Ng机器学习课程笔记(三)之正则化

    Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...

  7. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

  8. Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计

    Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...

  9. 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables

    相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...

随机推荐

  1. 服务器Hadoop+Hive搭建

    出于安全稳定考虑很多业务都需要服务器服务器Hadoop+Hive搭建,但经常有人问我,怎么去选择自己的配置最好,今天天气不错,我们一起来聊一下这个话题. Hadoop+Hive环境搭建 1虚拟机和系统 ...

  2. ES6模板字面量

    前面的话 JS 的字符串相对其他语言来说功能总是有限的,事实上,ES5中一直缺乏许多特性,如多行字符串.字符串格式化.HTML转义等.ES6通过模板字面量的方式进行了填补,模板字面量试着跳出自己JS已 ...

  3. 计算幂 51Nod 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  4. UglifyJS-- 对你的js做了什么

    也不是闲着没事去看压缩代码,但今天调试自己代码的时候发现有点意思.因为是自己写的,虽然压缩了,格式化之后还是很好辨认.当然作为min的首要准则不是可读性,而是精简.那么它会尽量的缩短代码,尽量的保持一 ...

  5. 1分钟选好最合适你的JavaScript框架

    欢迎大家持续关注葡萄城控件技术团队博客,更多更好的原创文章尽在这里~~​ Javascript框架(以下简称框架)也被称为Javascript库,是一组包含丰富功能和函数的JavaScript代码集, ...

  6. CocoaPods私有库管理

    简介: 前一篇文章已经介绍过如果安装使用CocoaPods,下面将要介绍如果通过CocoaPods和git来维护我们私有的库. 个人或公司在开发过程中,会积累很多可以复用的代码包,有些我们不想开源,又 ...

  7. 暑假集训D9总结

    考试 几乎绝望的考试= =,感觉自己啥都打不出来= =,就一道DP打了个贪心,剩下两道骗分,然而竟然排到前一半= =,不可思议= = 真是令人窒息的操作啊= = T1  [bzoj1592] Maki ...

  8. nodejs-基础

    01-nodejs介绍 1.什么是nodejs 1.(javascript跑在机器端,服务端)Javascript on the machine 2.(跑在谷歌v8引擎上)A runtime for ...

  9. 用Python做大批量请求发送

    大批量请求发送需要考虑的几个因素: 1. 服务器承载能力(网络带宽/硬件配置); 2. 客户端IO情况, 客户端带宽, 硬件配置; 方案: 1. 方案都是相对的; 2. 因为这里我的情况是客户机只有一 ...

  10. android项目数据库升级跨版本管理解决方案

    目前公司android项目普遍使用框架对数据库进行操作,数据库表与数据实体都具有严格的对应的关系,但是数据库的升依赖不同版本间的升级脚本,如果应用跨多版本进行升级时,当缺失部分升级脚本时就会导致应用异 ...