1. 内容概要

  • Multivariate Linear Regression(多元线性回归)

    • 多元特征
    • 多元变量的梯度下降
    • 特征缩放
  • Computing Parameters Analytically
    • 正规公式(Normal Equation )
    • 正规公式非可逆性(Normal Equation Noninvertibility)

2. 重点&难点

1)多元变量的梯度下降

2) 特征缩放

为什么要特征缩放

首先要清楚为什么使用特征缩放。见下面的例子

  • 特征缩放前



由图可以知道特征缩放前,表示面积的x1变量的值远大于x2,因此J(θ)图像表示就是椭圆的,导致在梯度下降的过程中,收敛速度非常慢。

  • 特征缩放后

对各变量特征缩放后绘制出来的损失函数J(θ)明显收敛更快,这也是为什么需要特征缩放的原因了。

实现方法

  • feature scaling

\[
\begin{equation}
x_i := \frac{x_i}{x_\max - x_\min}
\end{equation}
\]

每个输入值除以(max - min)

  • mean normalization

\[
\begin{equation}
x_i := \frac{x_i - μ_i}{s_i}
\end{equation}
\]

μi: 均值

si: max - min

3) Normal Equation 正规方程式

Normal Equation

\[
\begin{equation}
θ = (X^T·X)^{﹣1}·X·Y
\end{equation}
\]

具体推理过程详见掰开揉碎推导Normal Equation

与梯度下降方法进行比较

梯度下降 正规方程式
需要选择步长α 不需要选择步长α
需要迭代训练很多次 一次都不需要迭代训练
O(kn2) O(n3,计算(XT·X)-1需要花费较长时间
即使数据特征n很大,也可以正常工作 n如果过大,计算会消耗大量时间

4) 正规方程不可逆

当XT·X不可逆时,很显然此时正规方程将不能正常计算,常见原因如下:

  • 冗余特征,在两个特点紧密相关(即它们呈线性关系,例如面积和(长,宽)这两个特征线性相关)
  • 太多的特征(例如:m≤n)。 在这种情况下,可以删除一些特征或使用"regularization"。

补充:

  • A是可逆矩阵的充分必要条件是 |A|≠0

MARSGGBO♥原创







2017-8-2

Andrew Ng机器学习课程笔记--week2(多元线性回归&正规公式)的更多相关文章

  1. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  2. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  3. Andrew Ng机器学习课程笔记(一)之线性回归

    Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...

  4. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

  5. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  6. Andrew Ng机器学习课程笔记(三)之正则化

    Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...

  7. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

  8. Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计

    Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...

  9. 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables

    相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...

随机推荐

  1. layui中使用autocomplete.js

    前言 在网站找了一大圈都是问题没有答案,记录记录谨防踩坑 layui版本:layui-v1.0.9_rls a(https://github.com/devbridge/jQuery-Autocomp ...

  2. CSS3浏览器兼容

    不同的浏览器需要不同的前缀 -webkit chrome和safari -moz firefox -ms ie -o opera 一个炫酷标题效果: HTML: <!DOCTYPE HTML&g ...

  3. Unity strip engine code可能会使程序崩溃

    最近正在做新大厅的红包推荐口令快速领金币入口拍卖行之类的功能,同事把我的捕鱼整合到他的项目中时出现了闪退的问题,经排查是因为strip engine code选项. Strip engine code ...

  4. IDEA 单元测试testng入门及testng.xml

    直接进入正题: 1.TestNG的运行方式如下: With a testng.xml file 直接run as test suite With ant 使用ant From the command ...

  5. Multimodal —— 看图说话(Image Caption)任务的论文笔记(二)引入attention机制

    在上一篇博客中介绍的论文"Show and tell"所提出的NIC模型采用的是最"简单"的encoder-decoder框架,模型上没有什么新花样,使用CNN ...

  6. (转)Java中equals和==的区别

    java中的数据类型,可分为两类:  1.基本数据类型,也称原始数据类型.byte,short,char,int,long,float,double,boolean    他们之间的比较,应用双等号( ...

  7. Java项目 打war包方法

    我们可以运用DOS命令来手工打war包: 首先,打开DOS命令行,敲入"jar",我们发现它提示不是内部或外部的命令这样的错误,这时八成是你的JAVA环境没有配置好,我们可以用JA ...

  8. 三菱Q系列PLC基本指令讲解

    1.数据传送指令MOV和MOVP,格式为 MOV    SRC1    DES1     表示条件接通,将SRC1的值传送到DES1寄存器中,带P的表示只在条件接通的上升沿指令执行一个扫描周期,不带P ...

  9. Apache Kafka系列(一)

    摘要: 1.Apache Kafka基本概念 2.Kafka的安装 3.基本工具创建Topic 本文基于centos7, Apache Kafka 0.11.0 一.基本概念 Apache Kafka ...

  10. 【head first python】1.初识python 人人都爱列表

    #coding:utf-8 #创建简单的python列表 movies = ["The Holy Grail", "The Life of Brain", &q ...