Selective Search for Object Recognition 论文笔记【图片目标分割】
这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒.
前言:
这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对找到图片中,可能的区域目标,减少目标碎片,提升物体检测效率. 下面是这篇文章的笔记:
介绍及引言:
图片是分层次的,比如下图中a:

沙拉和匙在沙拉碗里,而碗又在桌子上,另外桌子和木头有关或者说桌子和桌子上的所有东西有关.所以图片中的目标是有层次的. 图片分割应该按层次来,也不存在使用单个策略这样通用的方法来进行图片分割,所以对图片分割都是基于多个策略,但是这样又会在合并区域的时候产生冲突. 比如说上图中的b图,猫可以使用颜色进行分割,但是它们的纹理是一样的. 相反的 ; 图C中的变色龙和周围的叶子在颜色上是相似的,但是在纹理上确实不同的.最后,图d中,汽车轮子和汽车在颜色和纹理上都是不同的,但是和汽车的形状吻合度很高. 对于这三个图,采用他们其中的一种视觉特征是无法来对它们进行图片分割的.
在这篇文章中,作者结合直觉分割算法和穷举搜索算法来提出这个selective search(选择性搜索)算法,使用直觉分割算法是希望达到结合图片的结构层次从下至上来分割,来产生目标区域. 使用穷举搜索算法的目的是得到所有可能是目标的区域. 选择性搜索算法,使用的是多样化在抽样算法
在这篇文章中,作者主要从下面问题来介绍选择性策略:
1. 选择性策略采用的是什么样的多样性策略来自适应分割图片?.
2. 选择性策略在图片中生成高质量小目标的效率怎么样?
3. 能否使用选择性策略来结合分类模型和外观模型来进行目标识别?
选择性算法介绍:
特点介绍:
1. 适用所有尺寸.
目标可以以任意尺寸出现在图片中,甚至有些目标和其他目标的边界并不明显,面对这些问题,选择性算法会对所有的目标尺寸进行记录,就像下图一样,
可以很容易使用层次算法来实现.

2. 多样化.
单个的策略无法去处理各种各样差异化区域. 所以使用了多种策略比如颜色空间,纹理,吻合度等.
3. 快速的计算.
流程介绍:
选择性算法使用的是按层次合并算法(Hierarchical Grouping),基本思路是这样:
通过对一张图片从低向上进行层次划分,当我们划出一个大区域时,继续在这个大区域中迭代划分,直到划不出区域为止.并将这个过程中产生的所有的区域记录下来,
在通过颜色,纹理,吻合度,大小来将这些细碎的区域进行合并.这种方式不需要设定滑动窗口,滑动格子,可以适应于任何目标的尺寸.
那么这个算法的具体过程:

1. 首先使用Efficient Graph-Based Image Segmentation论文中的方法来按层次来快速得到分割区域R
2. 初始化相似度集合S
3. 从分割区域集合R中来两两计算相似度,放入到相似度S集合中.
4. 从相似度S集合中,取出相似度最高的两个分割区域.然后将这两个区域进行合并,并放入到R中,然后从相似度S集合中去除掉
这两个分割区域相关联的区域.然后计算合并的新区域 和它邻近区域的相似性,放入到S中,这样循环.直到S集合为空集
5.重复3直到这个区域变为一个.
然后输出在这个过程中的所有的变化的区域.
关于多样性策略:
分为两个大部分: 颜色空间多样性,区域相似度多样性
1. 颜色空间多样性包含八种: [1]. RGB,[2]. I灰度图(grey), [3]. Lab,[4]. RGB图像中归一化的rg通道和图像的灰度图. [5].HSV
[6].归一化的rbg,[7].C,[8].H
2. 区域相似度多样性: 对纹理,吻合度,大小这几个特征进行计算
具体推倒过程,见论文.
那么选择性算法在物体识别中如何使用的呢?

我们使用选择性算法获取到一系列可能有目标的区域L,然后我们将我们事先打好标签的目标区域(我们成为的GT)作为正样本,在L集合中的区域中和GT的IOU在0.2~0.5之间的作为这个类的负样本,对于重合度及IOU超过0.7的负样本,我将它丢掉,然后对这些区域的数据,进行特征提取,论文中使用的SIFT算法,然后将这些特征中一起放入到线性SVM进行该类进行训练.然后将得分很高的错误样本,放入到负样本中继续训练.依次往复.
Selective Search for Object Recognition 论文笔记【图片目标分割】的更多相关文章
- 【计算机视觉】Selective Search for Object Recognition论文阅读3
Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong 在前 ...
- 【计算机视觉】Selective Search for Object Recognition论文阅读2
Selective Search for Object Recognition 是J.R.R. Uijlings发表在2012 IJCV上的一篇文章.主要介绍了选择性搜索(Selective Sear ...
- 【计算机视觉】Selective Search for Object Recognition论文阅读1
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...
- Notes on 'Selective Search For Object Recognition'
UijlingsIJCV2013, Selective Search For Object Recognition code 算法思想 利用分割算法将图片细分成很多region, 或超像素. 在这个基 ...
- 论文笔记:Selective Search for Object Recognition
与 Selective Search 初次见面是在著名的物体检测论文 「Rich feature hierarchies for accurate object detection and seman ...
- [论文理解]Selective Search for Object Recognition
Selective Search for Object Recognition 简介 Selective Search是现在目标检测里面非常常用的方法,rcnn.frcnn等就是通过selective ...
- Selective Search for Object Recognition
http://blog.csdn.net/charwing/article/details/27180421 Selective Search for Object Recognition 是J.R. ...
- 目标检测--Selective Search for Object Recognition(IJCV, 2013)
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...
- 机器学习:Selective Search for Object Recognition
今天介绍 IJCV 2013 年的一篇文章,Selective Search for Object Recognition,这个是后面著名的DL架构 R-CNN 的基础,后续介绍 R-CNN 的时候, ...
随机推荐
- 13、Java菜单条、菜单、菜单项
13.Java菜单条.菜单.菜单项 一般用Java做界面时,都得牵涉到菜单条.菜单.菜单项的设计.菜单项放在菜单里,菜单放在菜单条里,且其字体均可设置. 13.1.菜单条(Menubar) Frame ...
- java虚拟机学习-JVM调优总结(5)
数据类型 Java虚拟机中,数据类型可以分为两类:基本类型和引用类型.基本类型的变量保存原始值,即:他代表的值就是数值本身:而引用类型的变量保存引用值.“引用值”代表了某个对象的引用,而不是对象本身, ...
- 走进javascript——数组的那些事
Array构造器 如果参数只有一个并且是Number类型,那么就是指定数组的长度,但不能是NaN,如果是多个会被当做参数列表. new Array(12) // (12) [undefined × 1 ...
- 查看c语言的函数运行时间的简单模板
/* clock():捕捉从程序开始运行到 clock() 被调用时所耗费的时间,时间单位 是clock tick, 即:"时钟打点". 常数CLK_TCK:机器时钟每秒所走的时钟 ...
- 对pathtracing的一些个人理解
本人水平有限,若有错误也请指正~ 上面说到pathtracing(pt)的一些优点和缺点,优点即其实现很简单,这就是大概为什么当今市面上流行的很多渲染器如今都相继采用pathtracing算法为核心进 ...
- 543. Diameter of Binary Tree
https://leetcode.com/problems/diameter-of-binary-tree/#/description Given a binary tree, you need to ...
- PHP初体验
PHP初体验 提笔写初体验总不知道从何说起,直接聊PHP中的函数.PHP网络技术.数据库操作.PHP模板等感觉又不是初体验.最后还是决定从PHP的面向对象.PHP的魔术方法.PHP的反射.PHP中的异 ...
- git使用3
如何使用/学习第三方框架? 优秀的第三方框架都在 github.com 1> 搜索 2> git clone 获得完整版本 $ git clone https://github.com/A ...
- iOS项目评估报告
1.整体项目无分层概念,结构混乱,代码耦合严重. 影响:后期扩展困难,维护困难. 解决方案:1.整体采用mvc模式. 2.在原来的基础再抽离出业务层 3.业务层按模块管理,合理分层分包. 4.做好共用 ...
- 微信公众平台开发实战Java版之如何网页授权获取用户基本信息
第一部分:微信授权获取基本信息的介绍 我们首先来看看官方的文档怎么说: 如果用户在微信客户端中访问第三方网页,公众号可以通过微信网页授权机制,来获取用户基本信息,进而实现业务逻辑. 关于网页授权回调域 ...