[DP]P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
题目翻译(借鉴自@ 神犇的蒟蒻)
【问题描述】
追踪每头奶牛的去向是一件棘手的任务,为此农夫约翰安装了一套自动系统。他在每头牛身
上安装了一个电子身份标签,当奶牛通过扫描器的时候,系统可以读取奶牛的身份信息。
目前,每个身份都是由一个字符串组成的,长度为M (1 ≤ M ≤ 2000),所有的字符都取自N个
小写字母。奶牛们都是顽皮的动物,有时它们会在通过扫描器的时候倒着走,这样一个原来身份为
abcb 的奶牛就可能有两个不同的身份了(abcb 和 bcba),而如果身份是 abcba 的话就不会有这个
问题了。约翰想改变奶牛们的身份,使他们不管怎么走读起来都一样。比如说,abcb可以在最后加个 a,变成回文 abcba;也可以在前面加上 bcb,变成回文 bcbabcb;或者去除字母 a,保留的 bcb 也是一条回文。总之,约翰可以在任意位置删除或插入一些字符使原字符串变成回文。不巧的是,身份标签每增加或删除一个字母都要付出相应的费用(0 ≤ 费用代价 ≤ 10000)。给定一头奶牛的身份标签和增加或删除相关字母的费用,找出把原来字符串变成回文字符串的最小费用。注意空字符串也是回文。
【输入】
第一行:两个用空格分开的整数:N和M。
第二行:一个长度恰好为M的字符串,代表初始的身份标签。
第三行到第N + 2行:每行为一个用空格分开的三元组:其中包括一个字符和两个整数,分别
表示增加或删除这个字符的费用。
【输出】
只有一个整数,表示改造这个身份标签的最小费用。
当然,原文可见 传送门
这里是代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m,a[2001],w[27];
int dp[2001][2001];
int main() {
/*
设[l,r]为已经求得最优解的子串,若使[l,r+1]也为回文字串有
i. 删除[l,r+1]中的a[l+r]字符
ii. 在[l,r]的左边加上一个a[l+r]字符
故最小花费为min(del[a[r+1]],add[a[r+1]])
同理可得,使[l-1,r]的最小花费为min(del[a[l-1]],add[a[l-1]])
并且,若在a[l-1]==a[r+1]可以确定[l-1,r+1]在[l,r]的基础上不需要花费。
*/
char in;
scanf("%d%d\n",&n,&m);
for(int i=1; i<=m; i++) {
scanf("%c",&in);
a[i]=in-'a';
}
for(int i=1,x1; i<=n; i++) {
scanf("\n%c",&in),in-='a';
scanf("%d%d",&w[in],&x1);
if(x1<w[in]) w[in]=x1;
}
memset(dp,0x3f,sizeof dp);
for(int i=1; i<=m; i++) {
dp[i][i]=0;
if(a[i]==a[i+1]) dp[i][i+1]=0;
}
for(int ln=1; ln<=m; ln++) {
for(int l=1,r; l+ln-1<=m; l++) {
r=l+ln-1;
if(a[l-1]==a[r+1]) dp[l-1][r+1]=min(dp[l-1][r+1],dp[l][r]);
dp[l-1][r]=min(dp[l-1][r],dp[l][r]+w[a[l-1]]);
dp[l][r+1]=min(dp[l][r+1],dp[l][r]+w[a[r+1]]);
}
}
printf("%d\n",dp[1][m]);
return 0;
}
太棒了。。
[DP]P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome的更多相关文章
- 洛谷P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
题目链接: 点我 题目分析: 玄学\(dp\) 设\(val[s[i] - 'a' + 1]\)表示字母\(s[i]\)的花费 首先发现对于一个已经回文了的串\(s[i, j]\),在\(s[i - ...
- [luoguP2890] [USACO07OPEN]便宜的回文Cheapest Palindrome(DP)
传送门 f[i][j] 表示区间 i 到 j 变为回文串所需最小费用 1.s[i] == s[j] f[i][j] = f[i + 1][j - 1] 2.s[i] != s[j] f[i][j] = ...
- [USACO07OPEN]便宜的回文Cheapest Palindrome
字串S长M,由N个小写字母构成.欲通过增删字母将其变为回文串,增删特定字母花费不同,求最小花费. 题目描述见上 显然 这是一道区间DP 从两头DP,枚举长度啥的很套 ...
- 洛谷 2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
传送门 一道最简单的区间dp,然而我还是抄了题解. //Twenty #include<algorithm> #include<iostream> #include<cs ...
- 2018.06.29 洛谷P2890 [USACO07OPEN]便宜的回文(简单dp)
P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome 时空限制 1000ms / 128MB 题目描述 Keeping track of all the cows c ...
- 便宜的回文串(区间DP)
题目链接:便宜的回文串 这道题刚开始其实还是没有思路的.没办法,只能看题解了... 其实我们在思考问题时,考虑到一段串增或减时会改变它的长度,所以转移时会麻烦... 但其实不用考虑那么多的问题,我们只 ...
- (最长回文子串 线性DP) 51nod 1088 最长回文子串
输入一个字符串Str,输出Str里最长回文子串的长度. 回文串:指aba.abba.cccbccc.aaaa这种左右对称的字符串. 串的子串:一个串的子串指此(字符)串中连续的一部分字符构成的子(字符 ...
- 便宜的回文 (USACO 2007)(c++)
2019-08-21便宜的回文(USACO 2007) 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 追踪每头奶牛的去向是一件棘手的任 ...
- 算法——回文(palindrome)
回文(palindrome):指的是从头读到尾与从尾读到头一模一样的字符串. 分别在C.Java与Python实现回文检测: C: #include <stdio.h> #include ...
随机推荐
- 博客发在win10.me
看到了http://www.win10.me/?page_id=58 说可以把自己的文章投给win10.me 我试试 抱着没有的心态 居然可以 我联系九幽,和他们说我写了很多博客,质量不好,他们说好 ...
- win10 uwp clone
clone 可以用MemberwiseClone来复制一个类 但这个复制是浅复制,创建一个新的object然后复制值字段,对于引用就直接复制引用,不复制引用的本身,指向同样引用 如果要复制引用,可以使 ...
- win10 uwp 修改Pivot Header 颜色
我们在xaml创建一个Pivot <Pivot Grid.Row="1"> <PivotItem Header="lindexi">&l ...
- hash在URL上的用法及作用
阅读目录 1. # 2. ? 3. & 回到顶部 1. # 10年9月,twitter改版.一个显著变化,就是URL加入了"#!"符号.比如,改版前的用户主页网址为http ...
- 新建JSPWeb应用
首先,在eclipse Java EE里新建项目,选择Dynamic Web Project 目录如图所示,在WebContent里建立新文件JSP File. 先在body标签里写入hello wo ...
- Java Swing学习
在Java学习的过程中,我们时常会因为控制台程序的枯燥而失去了学习Java的乐趣,那么今天我们就开始学习Java的Swing.也就是GUI(Graphical user interface),在应用到 ...
- 用linux文件处理三剑客将微信群成员导出的方法
工具: Mac/Linux 系统 Chrome Linux命令:vi.cat. wc. grep. awk. sed.sort. uniq 步骤: 1.微信网页版登陆: https://wx.qq.c ...
- MFC属性表单修改“应用”键名并对其响应
1.重载CPropertySheet的虚函数OnInitDialog(),添加如下代码 BOOL DialogInputData::OnInitDialog() { BOOL bResult = CP ...
- 使用ichartjs生成图表
官网:http://www.ichartjs.com/ ichartjs 是一款基于HTML5的图形库.使用纯javascript语言, 利用HTML5的canvas标签绘制各式图形. ichartj ...
- Python 判断是否为质数或素数
一个大于1的自然数,除了1和它本身外,不能被其他自然数(质数)整除(2, 3, 5, 7等),换句话说就是该数除了1和它本身以外不再有其他的因数. 首先我们来第一个传统的判断思路: def handl ...