方伯伯的玉米田[SCOI2014]
题目描述
方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美。
这排玉米一共有N株,它们的高度参差不齐。
方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列。
方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作。拔玉米则可以随意选择一个集合的玉米拔掉。
问能最多剩多少株玉米,来构成一排美丽的玉米。
输入
第1行包含2个整数n,K,分别表示这排玉米的数目以及最多可进行多少次操作。
第2行包含n个整数,第i个数表示这排玉米,从左到右第i株玉米的高度ai。
输出
输出1个整数,最多剩下的玉米数。
样例输入
3 1
2 1 3
样例输出
3
提示
1 < N < 10000,1 < K ≤ 500,1 ≤ ai ≤5000
题解
仿佛耳熟能详的一道题,但是从来没有读过题面,原来是二维树状数组优化dp。f[i][j]表示到第i根玉米用j次拔高最多能留下多少根,显然区间选取从某点到n更有利于后面的点被选取(又是贪心思路),可写出f[i][j]=max{f[x][y],x<i,y<=j,a[x]+y<=a[i]+j},第一个条件是随着时间轴自然而然就满足的,后两个要求一个范围,可以用树状数组来优化。用二维树状数组(人生第一题)存储区间最大值,就可以方便地query转移了。
void update(int x,int y,int z)
{
for(int i=x;i<=k+1;i+=lowbit(i))
for(int j=y;j<=jd;j+=lowbit(j))
bj(sz[i][j],z);
}
int query(int x,int y)
{
int res=0;
for(int i=x;i;i-=lowbit(i))
for(int j=y;j;j-=lowbit(j))
bj(res,sz[i][j]);
return res;
}
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int sj=;
int n,k,a[sj],f[sj][],jd,jg,sz[][];
int bj(int &x,int y)
{
x=x>y?x:y;
}
int lowbit(int x)
{
return x&(-x);
}
void update(int x,int y,int z)
{
for(int i=x;i<=k+;i+=lowbit(i))
for(int j=y;j<=jd;j+=lowbit(j))
bj(sz[i][j],z);
}
int query(int x,int y)
{
int res=;
for(int i=x;i;i-=lowbit(i))
for(int j=y;j;j-=lowbit(j))
bj(res,sz[i][j]);
return res;
}
inline int r()
{
int zty=,jk=;
jk=getchar()-'';
if(jk>=&&jk<=) zty+=jk;
jk=getchar()-'';
while(jk>=&&jk<=)
{
zty*=;
zty+=jk;
jk=getchar()-'';
}
return zty;
}
int main()
{
n=r();
k=r();
for(int i=;i<=n;i++)
{
a[i]=r();
bj(jd,a[i]);
}
jd+=k;
for(int i=;i<=n;i++)
for(int j=k+;j>=;j--)
{
bj(f[i][j],query(j,a[i]+j-)+);
bj(jg,f[i][j]);
update(j,a[i]+j-,f[i][j]);
}
printf("%d",jg);
return ;
}
方伯伯的玉米田[SCOI2014]的更多相关文章
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MB Submit: 1399 Solved: 627 [Submit][ ...
- 「SCOI2014」方伯伯的玉米田 解题报告
#2211. 「SCOI2014」方伯伯的玉米田 发现是取一个最长不下降子序列 我们一定可以把一个区间加的右端点放在取出的子序列的最右边,然后就可以dp了 \(dp_{i,j}\)代表前\(i\)个玉 ...
- SCOI2014 bzoj3594 方伯伯的玉米田(二维树状数组+dp)
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1971 Solved: 961[Submit][St ...
- 【ybt金牌导航1-2-5】【luogu P3287】优美玉米 / 方伯伯的玉米田
优美玉米 / 方伯伯的玉米田 题目链接:ybt金牌导航1-2-5 / luogu P3287 题目大意 有一个数组,你可以每次给一个区间里面的值加一,要你使得最后剩下的最长单调不下降子序列最长. 思路 ...
- [SCOI2014]方伯伯的玉米田
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- [SCOI2014]方伯伯的玉米田 题解(树状数组优化dp)
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- bzoj3594: [Scoi2014]方伯伯的玉米田--树状数组优化DP
题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后, ...
随机推荐
- 关于java反射获取泛型
public class Test<T> { private final TypeToken<T> typeToken = new TypeToken<T>(get ...
- RecycleView和CardView
一.RecycleView <android.support.v7.widget.RecyclerView android:id="@+id/my_recycler_view" ...
- iOS基于AVPlayer的视频播放
基于 AVPlayer 自定义播放器http://www.cocoachina.com/ios/20160921/17609.html,http://www.2cto.com/kf/201608/53 ...
- 【LeetCode】233. Number of Digit One
题目: Given an integer n, count the total number of digit 1 appearing in all non-negative integers les ...
- 【Android Developers Training】 43. 序言:管理音频播放
注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...
- ecshop中smarty比较操作符(eq,ne,neq)含义
eq相等, ne.neq不相等, gt大于, lt小于, gte.ge大于等于, lte.le 小于等于, not非, mod求模. is [not] div by是否能被某数整除, is [not ...
- Python数据分析之路(一)查询和统计
0. 如何入门数据分析 关注沙漠之鹰的同学一定看过沙漠君写得很多篇数据分析文章,比如分析房价,车价,预测机动车摇号这些话题.其实文章中所有的分析都使用了Python和它非常强大的数据分析库Pandas ...
- VBS基本语法
一.初识VBS Vbs 是一种变量无关.解释性执行的脚本语言.vbs语言中不区分大小写.语句以换行结束. dim 声明变量:批量名称声明,多个变量之间用逗号分隔: set ...
- Java 多态透析 详细理解
1:什么是多态 一个对象的多种状态 (老师)(员工)(儿子) 教师 a =老钟; 员工 b =老钟; 2:多态体现 父类引用变量指向了子类的对象 Father f = new Son ...
- Android服务端的设计
1.创建自己的MyServletContextListener.java: package yybwb; import java.net.ServerSocket; import javax.serv ...