特征提取方法: one-hot 和 IF-IDF
one-hot 和 IF-IDF是目前最为常见的用于提取文本特征的方法,本文主要介绍两种方法的思想以及优缺点。
1. one-hot
1.1 one-hot编码
什么是one-hot编码?one-hot编码,又称独热编码、一位有效编码。其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。举个例子,假设我们有四个样本(行),每个样本有三个特征(列),如图:
上图中我们已经对每个特征进行了普通的数字编码:我们的feature_1有两种可能的取值,比如是男/女,这里男用1表示,女用2表示。那么one-hot编码是怎么搞的呢?我们再拿feature_2来说明:
这里feature_2 有4种取值(状态),我们就用4个状态位来表示这个特征,one-hot编码就是保证每个样本中的单个特征只有1位处于状态1,其他的都是0。
对于2种状态、三种状态、甚至更多状态都是这样表示,所以我们可以得到这些样本特征的新表示:
one-hot编码将每个状态位都看成一个特征。对于前两个样本我们可以得到它的特征向量分别为
1.2 one-hot在提取文本特征上的应用
one hot在特征提取上属于词袋模型(bag of words)。关于如何使用one-hot抽取文本特征向量我们通过以下例子来说明。假设我们的语料库中有三段话:
我爱中国
爸爸妈妈爱我
爸爸妈妈爱中国
我们首先对预料库分离并获取其中所有的词,然后对每个此进行编号:
1 我; 2 爱; 3 爸爸; 4 妈妈;5 中国
然后使用one hot对每段话提取特征向量:
;
;
因此我们得到了最终的特征向量为
我爱中国 -> 1,1,0,0,1
爸爸妈妈爱我 -> 1,1,1,1,0
爸爸妈妈爱中国 -> 0,1,1,1,1
优缺点分析
优点:一是解决了分类器不好处理离散数据的问题,二是在一定程度上也起到了扩充特征的作用(上面样本特征数从3扩展到了9)
缺点:在文本特征表示上有些缺点就非常突出了。首先,它是一个词袋模型,不考虑词与词之间的顺序(文本中词的顺序信息也是很重要的);其次,它假设词与词相互独立(在大多数情况下,词与词是相互影响的);最后,它得到的特征是离散稀疏的。
2. TF-IDF
IF-IDF是信息检索(IR)中最常用的一种文本表示法。算法的思想也很简单,就是统计每个词出现的词频(TF),然后再为其附上一个权值参数(IDF)。举个例子:
现在假设我们要统计一篇文档中的前10个关键词,应该怎么下手?首先想到的是统计一下文档中每个词出现的频率(TF),词频越高,这个词就越重要。但是统计完你可能会发现你得到的关键词基本都是“的”、“是”、“为”这样没有实际意义的词(停用词),这个问题怎么解决呢?你可能会想到为每个词都加一个权重,像这种”停用词“就加一个很小的权重(甚至是置为0),这个权重就是IDF。下面再来看看公式:
IF应该很容易理解就是计算词频,IDF衡量词的常见程度。为了计算IDF我们需要事先准备一个语料库用来模拟语言的使用环境,如果一个词越是常见,那么式子中分母就越大,逆文档频率就越小越接近于0。这里的分母+1是为了避免分母为0的情况出现。TF-IDF的计算公式如下:
根据公式很容易看出,TF-IDF的值与该词在文章中出现的频率成正比,与该词在整个语料库中出现的频率成反比,因此可以很好的实现提取文章中关键词的目的。
优缺点分析
优点:简单快速,结果比较符合实际
缺点:单纯考虑词频,忽略了词与词的位置信息以及词与词之间的相互关系。
特征提取方法: one-hot 和 IF-IDF的更多相关文章
- 四种简单的图像显著性区域特征提取方法-----AC/HC/LC/FT。
四种简单的图像显著性区域特征提取方法-----> AC/HC/LC/FT. 分类: 图像处理 2014-08-03 12:40 4088人阅读 评论(4) 收藏 举报 salient regio ...
- 简单的图像显著性区域特征提取方法-----opencv实现LC,AC,FT
https://blog.csdn.net/cai13160674275/article/details/72991049?locationNum=7&fps=1 四种简单的图像显著性区域特征 ...
- 特征提取方法: one-hot 和 TF-IDF
one-hot 和 TF-IDF是目前最为常见的用于提取文本特征的方法,本文主要介绍两种方法的思想以及优缺点. 1. one-hot 1.1 one-hot编码 什么是one-hot编码?one-ho ...
- scikit-learn一般实例之三:连接多个特征提取方法
在很多现实世界的例子中,有很多从数据集中提取特征的方法.很多时候我们需要结合多种方法获得好的效果.本例将展示怎样使用FeatureUnion通过主成分分析和单变量选择相进行特征结合. 结合使用转换器的 ...
- 图像特征提取方法:Bag-of-words
Bag-of-words简单介绍 最初的Bag-of-words ,也叫做"词袋",在信息检索中,Bag-of-words model假定对于一个文本,忽略其词序和语法,句法,将其 ...
- 四种比较简单的图像显著性区域特征提取方法原理及实现-----> AC/HC/LC/FT。
laviewpbt 2014.8.4 编辑 Email:laviewpbt@sina.com QQ:33184777 最近闲来蛋痛,看了一些显著性检测的文章,只是简单的看看,并没有深入的研究,以 ...
- 理解图像Garbor和HOG特征的提取方法及实例应用
前言:今天接触到了这两个特征,看了课本和博客后很蒙蔽,没有理解这两个特征,本篇博客的目的是只是参考其他的博客总结这两个特征,如果未来能研究和工作领域是这方面的话再回来自己研学,如有错误也欢迎指出. G ...
- 卷积神经网络提取特征并用于SVM
模式识别课程的一次作业.其目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个.图片大小为16x16.要求必须使用SVM作为二分类的分类器. 本文重点是如何使用卷积神经网络(CNN)来提取 ...
- OpenCV2简单的特征匹配
特征的匹配大致可以分为3个步骤: 特征的提取 计算特征向量 特征匹配 对于3个步骤,在OpenCV2中都进行了封装.所有的特征提取方法都实现FeatureDetector接口,DescriptorEx ...
随机推荐
- xgboost安装指南(win10,win7 64位)
---恢复内容开始--- Win7 64位系统下安装XGBoost 1. 环境介绍 计算机系统:win7 64位 Xgboost版本:xgboost0.6 2. 依赖软件环境 1) python 64 ...
- C#单例测试(懒汉式双锁保证线程安全)
单例模式的概念 单例模式的意思就是只有一个实例.单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例.这个类称为单例类. 关键点: 这个类只有一个实例,这是最基本的 它必须自行创建 ...
- Linux学习——yum学习和光盘yum源搭建
在rmp安装的时代,rpm包依赖让安装人员头大,而且头疼,有了yum后整个的安装更加简单和方便. yum源文件 1.yum源的介绍: 将所有的软件包放到官方服务器上,当进行yum在线安装时,可以自动解 ...
- ElasticSearch 插件jdbc import(1)-----定时执行
定时执行 参数schedule用来配置cron定时表达式 同时支持JSON数组的方式定义多个定时表达式: 例子如下: "schedule" : "0 0-59 0 ...
- Theano学习-scan循环
\(1.Scan\) 通用的一般形式,可用于循环 减少和映射(对维数循环)是特殊的 \(scan\) 对输入序列进行 \(scan\) 操作,每一步都能得到一个输出 \(scan\) 能看到定义函数的 ...
- 普通<= >=和between的sql查询方式区别与推荐
推荐SQL Server精准时间查询方式 USE Test /*插入或修改3条时间为以下极端情况的记录 UPDATE dbo.UserInfo SET AddTime = '2016-8-1 00:0 ...
- FPGA与PCI-E
从并行到串行: PCI Express(又称PCIe)是一种高性能.高带宽串行通讯互连标准,取代了基于总线的通信架构,如:PCI.PCI Extended (PCI-X) 以及加速图形端口(AGP). ...
- python 多进程间交换信息与共享信息
多线程调用函数,获取其返回值,个人总结了三种方法: 一.Queue(进程队列) 构造方法:multiprocessing.Queue([maxsize]) Queue.Queue类即是一个队列的同步实 ...
- Druid源码阅读之连接池
概述 Druid是阿里巴巴开源的一个数据库连接池 源码地址.下面简单分析一下连接池是怎么实现的 怎么开始阅读 如果使用过Druid连接池的都只要在Spring配置中配置jdbc的时候配置Driver是 ...
- 解决-Dmaven.multiModuleProjectDirectory system property is not set. Check $M2_HO问题
原因:因为你的编译工具(eclipse/Myeclipse...)没有添加jdk.添加M2_HOME的环境变量. 解决: ①:window->Preferences->java->I ...