堆排序,顾名思义,是采用数据结构堆来进行排序的一种排序算法。

研究没有规律的堆,没有任何意义。特殊的堆有最大堆(父节点值大于等于左右字节点值),最小堆(父节点值小于等于子节点值)。一般采用最大堆来进行排序,图1为最大堆来表示一维数组。

图1 最大堆表示一维数组

2叉树堆的几点特性

1、 最后父节点索引值

不妨设堆的总元素个数为N;最后一个父节点的索引值Index = N/2 ;可以写几个简单的堆进行数学归纳。图1中的最后一个父节点5 = 10 /2 ;

这个特性主要是在采用自底向上构建堆的时候,循环起始值。

2、父节点与子节点索引值关系

LeftIndex = parent * 2;

RightIndex = parent * 2 + 1;

对于任意一个节点K,其父节点为K/2,其左子节点为2K,右子节点为2K+1。

Max-Heapify(保持最大堆属性)

散乱排布的堆对算法的实现非常不友好,没有意义。因此,在随机数据输入时,需要对数据按照最大堆的属性进行一个初始排序。对一个父节点数据的max-heapify形象的推导直接采用算法导论的图,如图2。节点2的数据显然不符合最大堆的数据定义(父节点值不小于子节点值),因此把MAX(parent,left,right)替换到父节点,父节点的数据替换 到子节点中。对于替换的子节点4,仍然需要判断其是否满足最大堆数据定义,一直递归到满足定义。

图2 max-heapify原理

构建最大堆

对所有的父节点都进行max-heapify操作,自底向上从最后父节点一直循环到根节点,很巧妙。采用自底向上能够保证遍历过的数据始终是保持最大堆属性的,max-heapify操作始终是求当前父节点下所有子节点的最大值。

那自顶向下会怎样呢?

第一次max-heapify后,根节点并没有变成最大值,还要再遍历下根节点,这个显然在算法设计上不合适。所以自底向上的构思很巧妙。

HeapSort

首先保证输出数据满足最大堆的数据属性(第一行),然后把最大值提取出来存储在数组末端;然后计算剩下数据的最大堆,把最大值提出来;循环操作到排序完成。采用算法导论图解

编程实现

void CHeapSort::maxHeapify( std::vector<int> &arrayA, int index )
{ int l = leftChild(index);
int r = rightChild(index); int maxValue = ; if(l < heapSize && arrayA[l] > arrayA[index])
{
maxValue = l;
}
else
{
maxValue = index;
} if(r < heapSize && arrayA[r] > arrayA[maxValue])
{
maxValue = r;
} /* 父节点部位最大值 */
if(maxValue != index)
{
std::swap(arrayA[index],arrayA[maxValue]);
maxHeapify(arrayA,maxValue);
} } void CHeapSort::buildMaxHeap( std::vector<int> &arrayA )
{
heapSize = arrayA.size();
int halfSize = heapSize >> ; for(int i = halfSize ;i >= ; i--)
{
maxHeapify(arrayA,i);
}
} void CHeapSort::heapSort( std::vector<int> &arrayA )
{
buildMaxHeap(arrayA); for(int i = arrayA.size() - ; i > ; i--)
{
std::swap(arrayA[],arrayA[i]);
heapSize--;
maxHeapify(arrayA,);
}
}

结果:

  

堆排序HeapSort的更多相关文章

  1. 堆排序 Heapsort

    Prime + Heap 简直神了 时间优化好多,顺便就把Heapsort给撸了一发 具体看图 Heapsort利用完全二叉树+大(小)顶锥的结构每次将锥定元素和锥最末尾的元素交换 同时大(小)顶锥元 ...

  2. 排序算法FOUR:堆排序HeapSort

    /** *堆排序思路:O(nlogn) * 用最大堆,传入一个数组,先用数组建堆,维护堆的性质 * 再把第一个数与堆最后一个数调换,因为第一个数是最大的 * 把堆的大小减小一 * 再 在堆的大小上维护 ...

  3. 算法分析-堆排序 HeapSort 优先级队列

    堆排序的是集合了插入排序的单数组操作,又有归并排序的时间复杂度,完美的结合了2者的优点. 堆的定义 n个元素的序列{k1,k2,…,kn}当且仅当满足下列关系之一时,称之为堆. 情形1:ki < ...

  4. 堆排序——HeapSort

    基本思想:   图示: (88,85,83,73,72,60,57,48,42,6)   平均时间复杂度: O(NlogN)由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作 ...

  5. 堆排序Heapsort的Java和C代码

    Heapsort排序思路 将整个数组看作一个二叉树heap, 下标0为堆顶层, 下标1, 2为次顶层, 然后每层就是"3,4,5,6", "7, 8, 9, 10, 11 ...

  6. 堆排序与优先队列——算法导论(7)

    1. 预备知识 (1) 基本概念     如图,(二叉)堆是一个数组,它可以被看成一个近似的完全二叉树.树中的每一个结点对应数组中的一个元素.除了最底层外,该树是完全充满的,而且从左向右填充.堆的数组 ...

  7. 堆排序算法 java 实现

    堆排序算法 java 实现 白话经典算法系列之七 堆与堆排序 Java排序算法(三):堆排序 算法概念 堆排序(HeapSort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,可以利用数组的特 ...

  8. 排序 选择排序&&堆排序

    选择排序&&堆排序 1.选择排序: 介绍:选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理如下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始 ...

  9. 排序算法——QuickSort、MergeSort、HeapSort(C++实现)

    快速排序QuickSort template <class Item> void quickSort (Item a[], int l, int r) { if (r<=l) ret ...

随机推荐

  1. 学习总结---OVS

    OVS的组成 OVS的匹配条件和动作 OVS的发展方向 OVS的实践 OVS与Namespace配合模拟租户之间的数据通信 基本思路: Namespace模拟出不同的主机,这些主机之间的通信需要通过S ...

  2. jquery系列教程4-事件操作全解

    点击打开: jquery系列教程1-选择器全解 jquery系列教程2-style样式操作全解 jquery系列教程3-DOM操作全解 jquery系列教程4-事件操作全解 jquery系列教程5-动 ...

  3. Appium python自动化测试系列之Android UIAutomator终极定位(七)

    android uiautomator text定位 可能有人不知道为什么说android uiautomator是终极定位,而且android uiautomator和appium有什么关系呢?如果 ...

  4. [js插件开发教程]原生js仿jquery架构扩展开发选项卡插件

    jquery插件一般是这么干的: $.fn.插件名称 = function(){}, 把插件的名称加在.fn上,在源码里面实际上是扩展到构造函数的原型对象上,如果你没看过jquery的源代码,或者你曾 ...

  5. C#实现软件开机自启动原理与代码

    1.软件自启动原理 软件自启动的原理要从Windows的注册表聊起,在Windows操作系统下,主要有2个文件夹和8个注册表键项控制程序的自启动,这部分的详细介绍可以参看博客http://www.cn ...

  6. JavaScript中的数值转换

    在JavaScript中,有3个函数可以把非数值转换为数值 1.Number()函数 Number()可以用于任意数据类型. 转换规则如下. 如果是Boolean值,true和false将分别被转换为 ...

  7. 【转】循环冗余校验(CRC)算法入门引导

    原文地址:循环冗余校验(CRC)算法入门引导 参考地址:https://en.wikipedia.org/wiki/Computation_of_cyclic_redundancy_checks#Re ...

  8. 【NOIP2015提高组】 Day1 T3 斗地主

    [题目描述] 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关系根据牌的数码表示如下:3<4& ...

  9. Tomcat 笔记-配置虚拟目录

    ,默认情况下,只有webapps下的目录才能被Tomcat自动管理成一个web站点,把web站点的目录分散到其他磁盘管理就需要配置虚拟目录.把web应用所在目录交给web服务器管理,这个过程称之为虚拟 ...

  10. Java 中冷门的 synthetic 关键字原理解读

    看JAVA的反射时,看到有个synthetic ,还有一个方法isSynthetic() 很好奇,就了解了一下: 1.定义 Any constructs introduced by a Java co ...