The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.
Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of i th town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2

Sample Output

1 6
3 7
4 9
5 7
8 3
此题纠结了好久,重点是想办法输出,把所有更新了的节点记录,到下一次更新时输出
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
const double inf=1e20;
double d[800],cost[800][800];
int x[800],y[800];
int n,m;
struct node{
   double x,y;
}e[800];
double dis(node a,node b)
{
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
void prim()
{
    bool vis[800];
    for(int i=1;i<=n;i++)
    {
        vis[i]=0;
        d[i]=inf;
    }
    d[0]=0;
    int num=0;
    while(1){
        int v=-1;
        for(int i=1;i<=n;i++)
        {
            if(!vis[i]&&(v==-1||d[i]<d[v]))//找到最小的边
                v=i;
        }
        if(v==-1)break;//无更新退出
        vis[v]=1;
        if(num&&cost[x[v]][y[v]])printf("%d %d\n",x[v],y[v]);
        num=1;
        for(int i=1;i<=n;i++)
        {
            if(d[i]>cost[i][v])//把所有的边都更新一边
            {
                d[i]=cost[i][v];
                x[i]=i;
                y[i]=v;
          /* if(cost[i][v]!=0)
printf("%d %d\n",i,v);//每次更新全部时,即使不是下一个节点,也是会被更新的,所以要只输出下一个节点的*/
            }
        }
    }
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%lf%lf",&e[i].x,&e[i].y);
    for(int i=1;i<=n;i++)
    {
        for(int j=i+1;j<=n;j++)
        {
            cost[i][j]=cost[j][i]=dis(e[i],e[j]);
        }
        cost[i][i]=0;
    }
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        cost[a][b]=cost[b][a]=0;
    }
    prim();
    return 0;
}

poj1751最小生成树的更多相关文章

  1. Highways POJ-1751 最小生成树 Prim算法

    Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输 ...

  2. C - Highways poj1751最小生成树

    The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of p ...

  3. POJ-1751 Highways(最小生成树消边+输出边)

    http://poj.org/problem?id=1751 Description The island nation of Flatopia is perfectly flat. Unfortun ...

  4. POJ1751 Highways【最小生成树】

    题意: 给你N个城市的坐标,城市之间存在公路,但是由于其中一些道路损坏了,需要维修,维修的费用与公路长成正比(公路是直的). 但现有M条公路是完整的,不需要维修,下面有M行,表示不需要维修的道路两端的 ...

  5. 最小生成树练习3(普里姆算法Prim)

    风萧萧兮易水寒,壮士要去敲代码.本女子开学后再敲了.. poj1258 Agri-Net(最小生成树)水题. #include<cstdio> #include<cstring> ...

  6. POJ-1751 Highways---确定部分边的MST

    题目链接: https://vjudge.net/problem/POJ-1751 题目大意: 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多 ...

  7. kuangbin最小生成树专题

    网址:https://vjudge.net/contest/66965#overview 第一题: poj1251 裸最小生成树 #include<iostream> #include&l ...

  8. 最小生成树(Kruskal算法-边集数组)

    以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...

  9. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

随机推荐

  1. MyEclipse10的正确破解方法

    无法转载,故给出原文链接,以供需要者. MyEclipse10的正确破解方法

  2. ASP.NET Core MVC之ViewComponents(视图组件)

    前言 大概一个来星期未更新博客了,久违了各位,关于SQL Server性能优化会和ASP.NET Core MVC穿插来讲,如果你希望我分享哪些内容可以在评论下方提出来,我会筛选并看看技术文档来对你的 ...

  3. windows phone 8.1 开发:后台任务详解

    原文出自:http://www.bcmeng.com/backtask/ 小梦今天给大家分享一下windows phone 8.1中的后台任务如何实现,许多应用都会用到后台任务,所以我们必须得掌握. ...

  4. memcached参数解释及常用命令

    一.执行 memcached -h 会显示所有的参数项,对应的中文解释如下: -p <num>      监听的TCP端口(默认: 11211) -U <num>      监 ...

  5. WKWebView代理方法解析

    一.前言 上一篇文章已经对WKWebView做了一个简单的介绍,主要对它的一些方法和属性做了一个简单的介绍,今天看一下WKWebView的两个协议:WKNavigationDelegate 和 WKU ...

  6. Jmeter-元件的作用域和执行顺序

    Jmeter有8类可执行的元件,包括:逻辑控制器.配置元件.定时器.前置处理器.取样器.后置处理器.断言和监听器. 测试计划和线程组不属于元件. 1)取样器(Sampler):不与其他元件发生交互作用 ...

  7. 一键部署Kubernetes高可用集群

    三台master,四台node,系统版本为CentOS7 IP ROLE 172.60.0.226 master01 172.60.0.86 master02 172.60.0.106 master0 ...

  8. IOS简单画板实现

    先上效果图 设计要求 1.画笔能设置大小.颜色 2.有清屏.撤销.橡皮擦.导入照片功能 3.能将绘好的画面保存到相册 实现思路 1.画笔的实现,我们可以通过监听用户的 平移手势 中创建 UIBezie ...

  9. js实现哈希表(HashTable)

    在算法中,尤其是有关数组的算法中,哈希表的使用可以很好的解决问题,所以这篇文章会记录一些有关js实现哈希表并给出解决实际问题的例子. 第一部分:相关知识点 属性的枚举: var person = { ...

  10. 浩哥解析MyBatis源码(四)——DataSource数据源模块

    原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/6634880.html 1.回顾 上一文中解读了MyBatis中的事务模块,其实事务操作无非 ...