CJOJ 1644 编辑距离 / Luogu 2758 编辑距离(动态规划)

Description

字符串是数据结构和计算机语言里很重要的数据类型,在计算机语言中,对于字符串我们有很多的操作定义,因此我们可以对字符串进行很多复杂的运算和操作。实际上,所有复杂的字符串操作都是由字符串的基本操作组成。例如,把子串a替换为子串b,就是用查找、删除和插入这三个基本操作实现的。因此,在复杂字符串操作的编程中,为了提高程序中字符操作的速度,我们就应该用最少的基本操作完成复杂操作。

在这里,假设字符串的基本操作仅为:删除一个字符、插入一个字符和将一个字符修改成另一个字符这三种操作。

我们把进行了一次上述三种操作的任意一种操作称为进行了一步字符基本操作。

下面我们定义两个字符串的编辑距离:对于两个字符串a和b,通过上述的基本操作,我们可以把a变成b或b变成a;那么,把字符串a变成字符串b需要的最少基本字符操作步数称为字符串a和字符串b的编辑距离。

例如,如a=“ABC”,b=“CBCD”,则a与b的编辑距离为2。

你的任务就是:编一个最快的程序来计算任意两个字符串的编辑距离。

Input

第1行为字符串a;第2行为字符串b。

Output

编辑距离

Sample Input

ABC

CBCD

Sample Output

2

Http

CJOJ:http://oj.changjun.com.cn/problem/detail/pid/1644

Luogu:https://www.luogu.org/problem/show?pid=2758

Source

动态规划

解决思路

设F[i][j]表示A串前i个与B串前j个的最小编辑距离,当A[i]==B[j]时,F[i][j]=F[i-1][j-1];当A[i]!=B[j]时,F[i][j]=min(F[i-1][j],F[i][j-1],F[i-1][j-1])+1;

注意,初始化时F[i][0]=F[0][i]=i;

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
using namespace std; const int maxN=3000;
const int inf=2147483647; char A[maxN];
char B[maxN];
int F[maxN][maxN]={0}; int main()
{
cin>>A>>B;
for (int i=0;i<=max(strlen(A),strlen(B));i++)
F[i][0]=F[0][i]=i;
for (int i=1;i<=strlen(A);i++)
{
for (int j=1;j<=strlen(B);j++)
{
if (A[i-1]==B[j-1])
F[i][j]=F[i-1][j-1];
else
F[i][j]=min(F[i-1][j]+1,min(F[i][j-1]+1,F[i-1][j-1]+1));
//cout<<F[i][j]<<' ';
}
//cout<<endl;
}
cout<<F[strlen(A)][strlen(B)]<<endl;
return 0;
}

---恢复内容结束---

CJOJ 1644 编辑距离 / Luogu 2758 编辑距离(动态规划)的更多相关文章

  1. 51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edi ...

  2. luogu P2258 子矩阵 |动态规划

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉 ...

  3. 编辑距离及其动态规划算法(Java代码)

    编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.一般情况下编辑操作包括: 将一个字符替换成另一个字符: 插入一个字符: 删除一个字 ...

  4. 算法笔记1 - 编辑距离及其动态规划算法(Java代码)

    转载请标注原链接:http://www.cnblogs.com/xczyd/p/3808035.html 编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个 ...

  5. lintcode:最小编辑距离

    最小编辑距离 给出两个单词word1和word2,计算出将word1 转换为word2的最少操作次数. 你总共三种操作方法: 插入一个字符 删除一个字符 替换一个字符 样例 给出 work1=&quo ...

  6. sdut 1728 编辑距离问题( dp )

    题目 思路:edit(i, j),它表示第一个字符串的长度为i的子串到第二个字符串的长度为j的子串的编辑距离. 有如下动态规划公式: if i == 0 且 j == 0,edit(i, j) = 0 ...

  7. 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...

  8. 编辑距离算法(Levenshtein)

    编辑距离定义: 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数. 许可的编辑操作包括:将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如 ...

  9. 通俗解析莱文斯坦距离(Levenshtein Distance)计算原理(最小编辑距离)

    [版权声明]:本文章由danvid发布于http://danvid.cnblogs.com/,如需转载或部分使用请注明出处 最近看到一些动态规划的东西讲到莱文斯坦距离(编辑距离)的计算,发现很多都讲的 ...

随机推荐

  1. python——快速找出两个电子表中数据的差异

    最近刚接触python,找点小任务来练练手,希望自己在实践中不断的锻炼自己解决问题的能力. 公司里会有这样的场景:有一张电子表格的内容由两三个部门或者更多的部门用到,这些员工会在维护这些表格中不定期的 ...

  2. Python之正则表达式(re模块)

    本节内容 re模块介绍 使用re模块的步骤 re模块简单应用示例 关于匹配对象的说明 说说正则表达式字符串前的r前缀 re模块综合应用实例 正则表达式(Regluar Expressions)又称规则 ...

  3. Python进制转换(二进制、十进制和十六进制)

    #!/usr/bin/env python # -*- coding: utf-8 -*- # 2/10/16 base trans. wrote by srcdog on 20th, April, ...

  4. 主存与Cache的地址映射

    最近在复习计算机体系结构,选用的教材是名闻遐迩的<计算机体系结构 量化研究方法 第五版>(Computer Architecture A Quantitative Approach), 关 ...

  5. Linux命令不熟悉(记录)

    1.回到上一次操作的目录 cd - 2.rz打开上传文件 rz 3.下载某个文件 wget httpdownload 4.根据名字查找文件 find / -name mysql 5.通配符删除 rm ...

  6. 高防TTCDN

    TCDN是深圳市云中漫网络科技公司高防CDN产品的品牌名称,既可以防御,也可以达到加速的效果,价格实惠.TTCDN适用于WEB应用,可以隐藏源站服务器IP,有效的减轻源站服务器压力,加快全国各地区线路 ...

  7. re 学习随便

    . 任意一个字符 \转义字符 *  字符重复0--多次 + 字符重复1-多次 ? 字符重复0-1次 ^行首匹配 或者在一个字符集中表示取反 \$  匹配字符串末尾 \b 匹配\w 与\w 之间的 \B ...

  8. eclipse 好用的插件总结

    改变eclipse的背景色,各种关键词颜色的插件. color theme. 在mac下最好是通过手动复制粘贴jar文件到, eclipse的plugins下面. 通过Install new soft ...

  9. HTTP协议入门

    1.概述 (1)HTTP是应用层协议,是从Web服务器传输超文本到本地浏览器的传送协议,端口号为80.(2)默认情况下HTTP使用TCP,但是也可以基于以后存在的其他可靠传输协议.由于UDP无法提供可 ...

  10. 安装npm及cnpm(Windows)

    [工具官网] Node.js : http://nodejs.cn/ 淘宝NPM: https://npm.taobao.org/ [安装步骤] 一.安装node.js 1.前往node.js官网下载 ...