原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1231.html

题目传送门 - 51Nod1231

题意

题解

  显然是一个竞赛图相关的题。

  我们首先证明一个结论:

    一个出度序列存在对应的 $n$ 个点的竞赛图的充分必要条件是:这个出度序列的所有元素之和为 $\cfrac{n(n-1)}{2}$ ,且 对于这个出度序列中任意 $k$ 个元素,满足他们的和 $\geq \cfrac{k(k-1)}{2}$ 。

  由于我懒得写证明(证明需要用构造法,自行百度),这个结论的证明略去。

  于是我们只需要保证最终的出度序列的总和为 $\cfrac{n(n-1)}{2}$ ,并且将其排序后,对于所有 $k \in [1,n]$ ,前 $k$ 个元素之和 $\geq \cfrac{k(k-1)}2$ 即可。

  我们按照数值从小到大填。

  我们令 $dp[i][j][k]$ 表示前 $i$ 个数,当前最后一个数为 $j-1$ ,前 $i$ 个数的总和为 $k$ 的方案总数。然后大力 DP 即可。

  dp 复杂度的上限是 $O(n^5)$ 的,但是由于有很多无用的状态,所以 20 组数据仍然可以跑过去。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=45,mod=1e9+7;
int T,n,a[N],C[N][N],dp[N][N][N*N],cnt[N],tot[N];
int calc(int x){
return x*(x-1)/2;
}
void add(int &x,int y){
x+=y;
if (x>=mod)
x-=mod;
}
int solve(){
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+n+1);
memset(cnt,0,sizeof cnt);
for (int i=1;i<=n;i++)
if (a[i]>=0)
cnt[a[i]]++;
memset(tot,0,sizeof tot);
for (int i=n;i>=0;i--)
tot[i]=tot[i+1]+cnt[i];
memset(dp,0,sizeof dp);
dp[0][0][0]=1;
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
for (int k=0;k<=calc(n);k++){
int v=dp[i][j][k];
if (!v)
continue;
for (int t=0;i+t<=n-tot[j+1];t++){
int _k=k+t*j;
if (_k>calc(n)||calc(i+t)>_k)
break;
if (t<cnt[j])
continue;
add(dp[i+t][j+1][_k],1LL*v*C[n-i-tot[j]][t-cnt[j]]%mod);
}
}
int ans=0;
for (int i=0;i<=n;i++)
add(ans,dp[n][i][calc(n)]);
return ans;
}
int main(){
for (int i=0;i<N;i++)
C[i][0]=C[i][i]=1;
for (int i=1;i<N;i++)
for (int j=1;j<i;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
scanf("%d",&T);
while (T--)
printf("%d\n",solve());
return 0;
}
/*
dp[i][j][k]表示前 i 个数,最后一个数是 j , 所有数的总和为 k 的序列总数
dp[i+t][j+1][k+t*j]+=C[n-i][t]*dp[i][j][k]
j<n,i+t<=n
k+t*j<=n*(n-1)/2
forall t' in [0,t] , (i+t')*(i+t'-1)/2<=k+t*j
*/

  

51Nod1231 记分牌 动态规划的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【体系结构】动态调度算法:记分牌算法和tomasulo算法

    记分牌和tomasulo算法 动态调度: 通过硬件在程序执行时重新安排代码的执行序列来减少竞争引起的流水线停顿时间 动态调度流水线具备以下功能: (1)允许按序取多条指令和发射多条指令----取指(I ...

  9. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

随机推荐

  1. 模拟电路学习之NMOS开关电路1

  2. 使用mysql自带工具mysqldump进行全库备份以及source命令恢复数据库

    mysql数据库提供了一个很好用的工具mysqldump用以备份数据库,下面将使用mysqldump命令进行备份所有数据库以及指定数据库 一.mysqldump一次性备份所有数据库数据 /usr/lo ...

  3. Kafka中文官方文档

    参见链接:http://orchome.com/kafka/index

  4. js用replaceAll全部替换的方法

    1 前言 js中字符串整体替换,只有自带的replace,并没有replaceAll,如果我们需要把字符串中的字符统一替换,可以用正则表达式,由于经常使用就在String直接加个原生方法,方便调用. ...

  5. layui框架中关于table方法级渲染和自动化渲染之间的区别简单介绍

    方法级渲染: <table class="layui-hide" id="LAY_table_user" lay-filter="user&qu ...

  6. liunx 利用nginx 实现负载均衡

    一般采用软件实现负载均衡的有Nginx.apache.nginx 近年来使用频繁,其官网上面显示可以承载5万并发访问量,太牛了. nginx 相比 apache优势明显:Nginx 服务程序比较稳定, ...

  7. NPOI打印设置

    打印设置主要包括方向设置.缩放.纸张设置.页边距等.NPOI 1.2支持大部分打印属性,能够让你轻松满足客户的打印需要. 方向设置首先是方向设置,Excel支持两种页面方向,即纵向和横向. 在NPOI ...

  8. CentOS6文件系统思维导图

  9. Spark SQL访问PostgreSQL

    随着Spark SQL的正式发布,以及它对DataFrame的支持,它可能会取代HIVE成为越来越重要的针对结构型数据进行分析的平台.在博客文章What’s new for Spark SQL in ...

  10. LeetCode(82):删除排序链表中的重复元素 II

    Medium! 题目描述: 给定一个排序链表,删除所有含有重复数字的节点,只保留原始链表中 没有重复出现 的数字. 示例 1: 输入: 1->2->3->3->4->4- ...