51Nod1231 记分牌 动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1231.html
题目传送门 - 51Nod1231
题意

题解
显然是一个竞赛图相关的题。
我们首先证明一个结论:
一个出度序列存在对应的 $n$ 个点的竞赛图的充分必要条件是:这个出度序列的所有元素之和为 $\cfrac{n(n-1)}{2}$ ,且 对于这个出度序列中任意 $k$ 个元素,满足他们的和 $\geq \cfrac{k(k-1)}{2}$ 。
由于我懒得写证明(证明需要用构造法,自行百度),这个结论的证明略去。
于是我们只需要保证最终的出度序列的总和为 $\cfrac{n(n-1)}{2}$ ,并且将其排序后,对于所有 $k \in [1,n]$ ,前 $k$ 个元素之和 $\geq \cfrac{k(k-1)}2$ 即可。
我们按照数值从小到大填。
我们令 $dp[i][j][k]$ 表示前 $i$ 个数,当前最后一个数为 $j-1$ ,前 $i$ 个数的总和为 $k$ 的方案总数。然后大力 DP 即可。
dp 复杂度的上限是 $O(n^5)$ 的,但是由于有很多无用的状态,所以 20 组数据仍然可以跑过去。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=45,mod=1e9+7;
int T,n,a[N],C[N][N],dp[N][N][N*N],cnt[N],tot[N];
int calc(int x){
return x*(x-1)/2;
}
void add(int &x,int y){
x+=y;
if (x>=mod)
x-=mod;
}
int solve(){
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+n+1);
memset(cnt,0,sizeof cnt);
for (int i=1;i<=n;i++)
if (a[i]>=0)
cnt[a[i]]++;
memset(tot,0,sizeof tot);
for (int i=n;i>=0;i--)
tot[i]=tot[i+1]+cnt[i];
memset(dp,0,sizeof dp);
dp[0][0][0]=1;
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
for (int k=0;k<=calc(n);k++){
int v=dp[i][j][k];
if (!v)
continue;
for (int t=0;i+t<=n-tot[j+1];t++){
int _k=k+t*j;
if (_k>calc(n)||calc(i+t)>_k)
break;
if (t<cnt[j])
continue;
add(dp[i+t][j+1][_k],1LL*v*C[n-i-tot[j]][t-cnt[j]]%mod);
}
}
int ans=0;
for (int i=0;i<=n;i++)
add(ans,dp[n][i][calc(n)]);
return ans;
}
int main(){
for (int i=0;i<N;i++)
C[i][0]=C[i][i]=1;
for (int i=1;i<N;i++)
for (int j=1;j<i;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
scanf("%d",&T);
while (T--)
printf("%d\n",solve());
return 0;
}
/*
dp[i][j][k]表示前 i 个数,最后一个数是 j , 所有数的总和为 k 的序列总数
dp[i+t][j+1][k+t*j]+=C[n-i][t]*dp[i][j][k]
j<n,i+t<=n
k+t*j<=n*(n-1)/2
forall t' in [0,t] , (i+t')*(i+t'-1)/2<=k+t*j
*/
51Nod1231 记分牌 动态规划的更多相关文章
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 【体系结构】动态调度算法:记分牌算法和tomasulo算法
记分牌和tomasulo算法 动态调度: 通过硬件在程序执行时重新安排代码的执行序列来减少竞争引起的流水线停顿时间 动态调度流水线具备以下功能: (1)允许按序取多条指令和发射多条指令----取指(I ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
随机推荐
- mysql运维
反反复复装了好多次的mysql,上学的时候从来没有考虑过稳定性,装起来,能跑通,增删改查没有问题万事大吉.参与工作后参与平台搭建和维护,平台的稳定性是首先必须要考虑的问题,之前装mysql使用经历了密 ...
- SQL语句的行列转换
[一]行转列 1,查询原始的数据 /***这次练习的主题,行转列,列转行***/select * from Scores 2,得到姓名,通过group by select Student as '姓名 ...
- 如果Android真的收费了,你怎么看?
前言 今天突然看到一群里有人发了下面这样一张图片,然后群里又炸了! 于是又和同事讨论了android收费的问题,然后隔壁正在玩农药的UI妹子就笑了... 没错! 安卓可能要收费了!安卓可能要收费了 ...
- Windows添加.NET Framework 3.0 NetFx3 失败 - 状态为:0x800f0950
原文链接:https://answers.microsoft.com/zh-hans/insider/forum/all/win10-dism%E9%94%99%E8%AF%AF-0x800f0950 ...
- Confluence 6 € 欧元字符集不能正常显示
€ (euro) 标记 是一个 3 字节字符,在 (UTF-8)中这个字符被表示为 0xE2, 0x82, 0xAC. 有时候,你的系统中没有设置所有的地方为相同的字符集的时候(Confluence, ...
- django模板导入外部js和css等文件
1.新建文件夹templates(存放模板文件),新建文件夹media(存放js.css.images文件夹),并把两个文件夹放到了项目的根目录下 2.设定模板路径 设置模板路径比较简单,只要在set ...
- vi 编辑器常用快捷键
vi 编辑器 vim 编辑器算是vi的进阶版本 所有的unix like 系统都会内建vi编辑器 vi三种模式分别为: 1.一般模式(默认模式或指令模式) 上下左右方向键 移动光标 pageUp pa ...
- poj2417 bsgs算法非逆元模板,用于求解A^x=B(mod C)的方程
参考博客 https://blog.csdn.net/clover_hxy/article/details/50683832关于欧拉定理推论的证明 https://www.cnblogs.com/as ...
- Vue注意事项及用得较多的属性归纳
1.prop是一个对象而不是字符串数组时,它包含验证要求.props: { // 基础类型检测 (`null` 意思是任何类型都可以) propA: Number, // 多种类型 propB: [S ...
- wampserver本地配置域名映射
本地开发时,一般是在浏览器输入 http://localhost/项目文件夹名 来测试网页文件,你有没有想过在本地在浏览器输入你自己设定的一个域名进入项目文件夹中去,本地配置多域名可以测试二级域名以及 ...