1:练习spark的时候,操作大概如我读取hdfs上面的文件,然后spark懒加载以后,我读取详细信息出现如下所示的错误,错误虽然不大,我感觉有必要记录一下,因为错误的起因是对命令的不熟悉造成的,错误如下所示:

 scala> text.collect
java.net.ConnectException: Call From slaver1/192.168.19.128 to slaver1: failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:)
at java.lang.reflect.Constructor.newInstance(Constructor.java:)
at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:)
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:)
at org.apache.hadoop.ipc.Client.call(Client.java:)
at org.apache.hadoop.ipc.Client.call(Client.java:)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:)
at com.sun.proxy.$Proxy36.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getFileInfo(ClientNamenodeProtocolTranslatorPB.java:)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:)
at com.sun.proxy.$Proxy37.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:)
at org.apache.hadoop.hdfs.DistributedFileSystem$.doCall(DistributedFileSystem.java:)
at org.apache.hadoop.hdfs.DistributedFileSystem$.doCall(DistributedFileSystem.java:)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:)
at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:)
at org.apache.hadoop.fs.Globber.getFileStatus(Globber.java:)
at org.apache.hadoop.fs.Globber.glob(Globber.java:)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$partitions$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$partitions$.apply(RDD.scala:)
at scala.Option.getOrElse(Option.scala:)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$partitions$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$partitions$.apply(RDD.scala:)
at scala.Option.getOrElse(Option.scala:)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.rdd.RDD$$anonfun$collect$.apply(RDD.scala:)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:)
at org.apache.spark.rdd.RDD.collect(RDD.scala:)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC$$iwC.<init>(<console>:)
at $iwC$$iwC.<init>(<console>:)
at $iwC.<init>(<console>:)
at <init>(<console>:)
at .<init>(<console>:)
at .<clinit>(<console>)
at .<init>(<console>:)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$(SparkIMain.scala:)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:)
at org.apache.spark.repl.SparkILoop.reallyInterpret$(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.processLine$(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.innerLoop$(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$.apply$mcZ$sp(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$.apply(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$.apply(SparkILoop.scala:)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:)
at org.apache.spark.repl.Main$.main(Main.scala:)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.net.ConnectException: Connection refused
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:)
at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:)
at org.apache.hadoop.ipc.Client$Connection.access$(Client.java:)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:)
at org.apache.hadoop.ipc.Client.call(Client.java:)
... more

2:错误原因如下所示:

我使用了如下所示命令来读取hdfs上面的文件,scala> var text = sc.textFile("hdfs://slaver1:/input.txt");,然后使用text.collect命令来查看详细信息,就是查看详细信息的时候报的上面的错误,错误原因是因为我读取hdfs文件的时候少了端口号,造成的错误;

修改为如下所示即可:

scala> var text = sc.textFile("hdfs://slaver1:9000/input.txt");
scala> text.collect

java.net.ConnectException: Call From slaver1/192.168.19.128 to slaver1:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org的更多相关文章

  1. exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused

    1.虽然,不是大错,还说要贴一下,由于我运行run-example streaming.NetworkWordCount localhost 9999的测试案例,出现的错误,第一感觉就是Spark没有 ...

  2. Caused by: java.net.ConnectException: Call From master/192.168.199.130 to master:9000 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.

    1:安装好hive,准备启动的时候出现下面的错误(由于hive是基于Hadoop的,所以必须先将你的集群启动起来,我就是没有启动集群,直接启动hive导致的错误): [root@master bin] ...

  3. ls: Call From hdoop2/192.168.18.87 to hdoop2:8020 failed on connection exception: java.net.ConnectException: 拒绝连接; For more details see

    场景:  预发环境中,同事已经搭建了一套hadoop集群,由于版本与所需不符,所以需要替换版本 问题描述: 在配置文件都准确的情况下,启动hadoop,出现以下报错: 启动之前初始化:   初始化目录 ...

  4. Error: java.net.ConnectException: Call From tuge1/192.168.40.100 to tuge2:8032 failed on connection exception

    先看解决方案,再看唠嗑,唠嗑可以忽略. 解决方案: 使用start yarn.sh启动yarn就可以了. 唠嗑: 今天学习Spark基于Yarn部署.然后总以为Yarn是让Spark启动的,提交程序的 ...

  5. Call From master/192.168.128.135 to master:8485 failed on connection exception: java.net.ConnectException: Connection refused

    hadoop集群搭建了ha,初次启动正常,最近几天启动时偶尔发现,namenode1节点启动后一段时间(大约10几秒-半分钟左右),namenode1上namenode进程停掉,查看日志: -- :: ...

  6. Hadoop格式化 From hu-hadoop1/192.168.11.11 to hu-hadoop2:8485 failed on connection exception: java.net.

    192.168.11.12:8485: Call From hu-hadoop1/192.168.11.11 to hu-hadoop2:8485 failed on connection excep ...

  7. INFO org.apache.hadoop.ipc.RPC: Server at master/192.168.200.128:9000 not available yet, Zzzzz...

    hadoop 启动时namenode和datanode可以启动,使用jps命令也可以看到进程,但是在浏览器中输入master:50070却没有显示datanode 查看datanode的log日志: ...

  8. Bad connection to FS. command aborted. exception: Call to chaoren/192.168.80.100:9000 failed on connection exception: java.net.ConnectException: Connection refused

    Bad connection to FS. command aborted. exception: Call to chaoren/192.168.80.100:9000 failed on conn ...

  9. 格式化namenode时 报错 No Route to Host from node1/192.168.1.111 to node3:8485 failed on socket timeout exception: java.net.NoRouteToHostException: No route to host

    // :: FATAL namenode.NameNode: Failed to start namenode. org.apache.hadoop.hdfs.qjournal.client.Quor ...

随机推荐

  1. 负载均衡集群中的session解决方案【转】

    通常面临的问题 从用户端来解释,就是当一个用户第一次访问被负载均衡代理到后端服务器A并登录后,服务器A上保留了用户的登录信息:当用户再次发送请求时, 根据负载均衡策略可能被代理到后端不同的服务器,例如 ...

  2. salt使用技巧

    实时截获任务输出   __salt__['event.send']("module_send_event", {'message': message, 'jid': jid},   ...

  3. windows系统yolov3的安装教程(图文)

    记于 2018-05-19 13:21:13 距离开始着手安装yolov3已经过去将近20个小时,当然我并没有装那么久啦,就是大概4,5个小时这么久,网络上教程很少,步骤也千奇百怪,这次成功装好后就想 ...

  4. Hibernate search使用示例(基础小结-注解方式)

    (对于项目环境配置,一直没怎么看过.这次经历里从基础环境搭建到hibernate search示例的完成) 1.首先创建project,选择了web project. 2.导入hibernate se ...

  5. .NET基础之构造函数

    1.构造函数: 分为实例构造函数.静态构造函数.私有构造函数. 使用new表达式创建某个类的对象时, 1.1实例构造函数: (1)构造函数的名字与类名相同: (2)使用new表达式创建类的对象或者结构 ...

  6. Apache服务器和tomcat服务器有什么区别(转)

    Apache与Tomcat都是Apache开源组织开发的用于处理HTTP服务的项目,两者都是免费的,都可以做为独立的Web服务器运行.Apache是Web服务器而Tomcat是Java应用服务器. A ...

  7. layui 各种弹出框

    第一步:引用文件 第二步:写脚本 <script> //iframe窗 //layer.open({ // type: 2, // title: false, // closeBtn: 0 ...

  8. flex下部固定高,上部不固定,而且超过内容要滚动

    <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8&quo ...

  9. Confluence 6 修改警告的阈值和表现

    修改警告的阈值 一些警告的阈值是可以被配置的.如果你发现一些阈值很容易就触发警告了,你可以对这些阈值进行调整让你的系统警告不容易被触发. 访问 Recognized System Properties ...

  10. hishlib 算法加密

    通过hashlib MD5得到一个32的加密密码 import hashlib def getMD5(): md5 = hashlib.md5()  #调用MD5加密方法 with open(path ...