It is said that a dormitory with 6 persons has 7 chat groups ^_^. But the number can be even larger: since every 3 or more persons could make a chat group, there can be 42 different chat groups.

Given N persons in a dormitory, and every K or more persons could make a chat group, how many different chat groups could there be?

Input

The input starts with one line containing exactly one integer T which is the number of test cases.

Each test case contains one line with two integers N and K indicating the number of persons in a dormitory and the minimum number of persons that could make a chat group.

  • 1 ≤ T ≤ 100.
  • 1 ≤ N ≤ 109.
  • 3 ≤ K ≤ 105.

Output

For each test case, output one line containing "Case #x: y" where x is the test case number (starting from 1) and y is the number of different chat groups modulo 1000000007.

Example

Input
1
6 3
Output
Case #1: 42

题解:

看起来很简单的题   我还是做了很久 基础知识点有很多漏洞吧

本题就是一个 C(n,k)+C(n,k+1)+...+C(n,n) 的过程

如果暴力算的话会超时  哭叽叽

要知道组合数的总和是2^n

所以转化成 2^n - C(n,0)+C(n,1)+...+C(n,k-1)

加减乘可直接用同余定理直接拆开算  除法不行

所以利用费马小定理(假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p),即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。)

得到推论  a*a(p-2)≡1(mod p)对于整数a,p,a关于p的逆元就是a^(p-2),直接快速幂解之即可,但注意这个定理要求a,p互质

利用上述方法求得逆元

计算乘方时用到快速幂

如此这一问题便解决了

(我的第一篇博客,欢迎大家批评指正^-^)

#include <iostream>
#include <stdio.h> using namespace std;
typedef long long ll;
const int N=1e5+;
const ll mod=1e9+; ll quick(ll a,ll b) //快速幂
{
ll ans=;
a%=mod;
while(b){
if(b&) ans=ans*a%mod;
a=a*a%mod;
b>>=;
}
return ans;
} int main()
{
ll n,k,i;
int l=,t;
scanf("%d",&t);
while(t--){
scanf("%I64d%I64d",&n,&k);
ll ans=quick(,n)-; //2^n-C(n,0)
ll cur=n;
for(i=;i<k;i++){
ans=(ans+mod-cur)%mod; //emmm 为啥要加个mod我还不太了解,如果有大佬知道,麻烦指点一下
cur=cur*(n-i)%mod;
cur=cur*quick(i+,mod-)%mod; //乘以逆元
}
printf("Case #%d: %I64d\n",l++,ans);
}
return ;
}

Gym - 101775A Chat Group 组合数+逆元+快速幂的更多相关文章

  1. Gym 101775A - Chat Group - [简单数学题][2017 EC-Final Problem A]

    题目链接:http://codeforces.com/gym/101775/problem/A It is said that a dormitory with 6 persons has 7 cha ...

  2. 【2021 ICPC Asia Jinan 区域赛】 C Optimal Strategy推公式-组合数-逆元快速幂

    题目链接 题目详情 (pintia.cn) 题目 题意 有n个物品在他们面前,编号从1自n.两人轮流移走物品.在移动中,玩家选择未被拿走的物品并将其拿走.当所有物品被拿走时,游戏就结束了.任何一个玩家 ...

  3. 牛客网 牛客小白月赛1 I.あなたの蛙が帰っています-卡特兰数,组合数阶乘逆元快速幂

    I.あなたの蛙が帰っています   链接:https://www.nowcoder.com/acm/contest/85/I来源:牛客网     这个题有点意思,是卡特兰数,自行百度就可以.卡特兰数用处 ...

  4. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  5. 刷题总结——分糖(ssoj 容斥原理+逆元+快速幂+组合数求插板)

    题目: 题目描述 有 N 个(相同的)糖果,M 个(不同的)小朋友.M 和 N 满足:1≤M≤N≤100000(105).要求:1.每个小朋友都至少有一个糖果.2.不存在正整数 X(X>=2), ...

  6. 牛客网 Wannafly挑战赛11 B.白兔的式子-组合数阶乘逆元快速幂

    链接:https://www.nowcoder.com/acm/contest/73/B来源:牛客网 B.白兔的式子   时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 262144K, ...

  7. Chat Group gym101775A(逆元,组合数)

    传送门:Chat Group(gym101775A) 题意:一个宿舍中又n个人,最少k(k >= 3)个人就可以建一个讨论组,问最多可以建多少个不同的讨论组. 思路:求组合数的和,因为涉及除法取 ...

  8. ACM学习历程—HDU5490 Simple Matrix (数学 && 逆元 && 快速幂) (2015合肥网赛07)

    Problem Description As we know, sequence in the form of an=a1+(n−1)d is called arithmetic progressio ...

  9. 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)

    题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...

随机推荐

  1. STLINK V2安装使用详解

    1.      解压st-link_v2_usb driver.zip文件. 2.       运行解压后的st-link_v2_usbdriver.exe文件,安装STLINK V2驱动程序.安装路 ...

  2. [C++]Knights of a Polygonal Table(骑士的多角桌)

    [程序结果:用例未完全通过,本博文仅为暂存代码之目的] /* B. Knights of a Polygonal Table url:http://codeforces.com/problemset/ ...

  3. ES5新增内容

    一.数组API实际开发中forEach和map会多一些=>是es6语法中的arrow function举例:(x) => x + 6相当于function(x){return x + 6; ...

  4. js常见的几种继承方式

    1.原型链继承 “父类”的实例作为子类的prototype SubType.prototype = new SuperType() 2.组合继承(原型链+构造函数) function SubType( ...

  5. 添加日志(配置spring)---Java_web

    一.配置日志--以下三部 1.配置web.xml;  2.配置 log4j.properties;  3.配置jar包 以下是文件目录 二.配置 web.xml (注意:下面的classpath即lo ...

  6. Fragment回退栈&commit()和commitAllowingStateLoss()

    Activity切换时是通过栈的形式,不断压栈出栈,在Fragment的时候,如果你不是手动开启回退栈,它是直接销毁再重建,但如果将Fragment任务添加到回退栈,情况就会不一样了,它就有了类似Ac ...

  7. Win10提示无法创建新的分区也找不到现有的分区解法

    原文链接:https://www.pconline.com.cn/win10/1126/11261093.html 1.格式化整个硬盘,重新分区 如果你的硬盘上没有重要数据的话,到了分区这一步时,将硬 ...

  8. 如何在vue中使用动态使用本地图片路径

    不知道各位小伙伴有没有在开发遇到一个问题,就是在线上的项目使用后台返回本地图片路径,然后加载不上的情况呢? 我的解决方法就是:先在项目的data下定义好这样一个数组用于存放需要加载的路径 [ {nam ...

  9. Springboot实体类转JSON报错Could not find acceptable representation & 设置访问项目根路径的默认欢迎页面

    =================实体类转JSON报错的解决办法============= 之前在springmvc的时候也报过这个错,原因以及springmvc中解决办法参考:https://www ...

  10. 20145215《网络对抗》Exp4 恶意代码分析

    20145215<网络对抗>Exp4 恶意代码分析 基础问题回答 如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有哪些,用 ...