Introduction to boundary integral equations in BEM
Boundary element method (BEM) is an effective tool compared to finite element method (FEM) for resolving those electromagnetic field problems including open domain and/or complex models with geometric details, especially those having large dimensional scale difference. Its basic idea is to construct the solution of a partial differential equation (PDE), like the 2nd order Laplace equation, by using a representation formula derived from the Green's 2nd identity. By approaching this representation formula to the domain boundary with some presumption on potential continuity, boundary integral equation can be obtained. This article explains how this equation is derived and introduces four integral operators thereof.
Fundamental solution
Let \(\Omega\) be an open domain in \(\mathbb{R}{^n}\) with boundary \(\pdiff\Omega = \Gamma = \Gamma_D \cup \Gamma_N\) and \(u\) be the electric potential such that
\begin{equation} \begin{aligned} -\Delta u(x) &= 0 \quad \forall x \in \Omega \\ u(x) &= g \quad \forall x \in \Gamma_D \\ \pdiff_{\vect{n}} u(x) &= 0 \quad \forall x \in \Gamma_N \end{aligned}. \label{eq:laplace-problem} \end{equation}
The fundamental solution to the above Laplace operator is
\begin{equation} \gamma(x) = \begin{cases} -\frac{1}{2\pi}\log\lvert x \rvert & (n = 2) \\ \frac{\lvert x \rvert^{2-n}}{(n-2)\omega_{n}} & (n > 2) \end{cases}, \label{eq:fundamental-solution} \end{equation}
where \(n\) is the space dimension and \(\omega_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}\). The fundamental solution is the potential response caused by a source charge density with unit Dirac distribution centered at the origin.
Representation formula
The electric potential distribution \(u\) in the domain \(\Omega\) can be represented as a combination of double and single layer potentials as
\begin{equation} u(x) = \int_{\Gamma} \pdiff_{\vect{n}(y)}[\gamma(x,y)] \left[ u(y) \right]_{\Gamma} \intd o(y) - \int_{\Gamma} \gamma(x,y) \left[ \pdiff_{\vect{n}(y)} u(y) \right]_{\Gamma} \intd o(y) \quad (x \in \Omega), \label{eq:representation-formula} \end{equation}
where \(\gamma(x, y) = \gamma(x - y)\), \(\vect{n}(y)\) is the outward unit normal vector at \(y \in \Gamma\), \(\intd o(y)\) is the surface integral element with respect to coordinate \(y\) and \([\cdot]_{\Gamma}\) represents the jump across the boundary \(\Gamma\), which is defined as
$$ [u(x)]_{\Gamma} = u\big\vert^{+}_{\vect{n}(x)} - u\big\vert^{-}_{\vect{n}(x)}. $$
Remark
- It can be seen that the electric potential \(u\) in the domain \(\Omega\) is represented as a convolution between the fundamental solution \(\gamma(x)\) and source layer charges configured on the domain boundary \(\Gamma\), which is the same as the convolution between an unit impulse response function and source excitation exhibited in electric circuit theory. The difference is for the electrostatic Laplace problem, the convolution is carried out in space domain, while in circuit theory it is in time domain.
- Convolution implies that a system's response should be linearly dependent on the source excitation. Therefore, the total response can be given as a linear superposition of the contributions from continuously distributed sources.
- Accordingly, the medium described by the PDE should be linear, homogeneous (spatial invariant) and time invariant. We should also note that if the medium's parameter is inhomogeneous but time invariant, hence the response linearly depends on a source located at a specified position. Then the fundamental solution changes its form when the source changes position. This is because the space loses symmetry.
Because the representation formula is a corner stone for BEM, BEM can only be used for linear and homogeneous medium. In addition, BEM can handle open domain problem. These two factors render BEM quite suitable for solving electromagnetic field problems with a large air box, which are usually difficult for FEM.
Boundary integral equation and integral operators
If we assume a constant zero field condition outside the domain \(\Omega\), i.e. \(u(x) \big\vert_{\mathbb{R}^n\backslash\Omega} \equiv 0\), which is called direct method, the representation formula becomes
\begin{equation} u(x) = -\int_{\Gamma} \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right] u(y) \intd o(y) + \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega). \label{eq:representation-formula-zero-field-cond} \end{equation}
Its normal derivative is
\begin{equation} \pdiff_{\vect{n}(x)} u(x) = -\int_{\Gamma} \pdiff_{\vect{n}(x)} \left\{ \pdiff_{\vect{n}(y)}[\gamma(x,y)] \right\} u(y) \intd o(y) + \int_{\Gamma} \pdiff_{\vect{n}(x)} \left[ \gamma(x,y) \right] \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega). \label{eq:normal-derivative-formula-zero-field-cond} \end{equation}
When \(u(x)\) and \(\pdiff_{\vect{n}(x)} u(x)\) approach to the boundary \(\Gamma_D\) and \(\Gamma_N\) respectively, the Cauchy data 1 are obtained, which specify both the function value and normal derivative on the boundary of the domain. They can be used to match the already given Dirichlet and homogeneous Neumann boundary conditions in \eqref{eq:laplace-problem} and hence the boundary integral equation can be obtained. However, before presenting its formulation, we need to clarify the behavior of single and double layer potentials near the boundary.
When approaching to the boundary, the single layer potential $$ \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega) $$ in \eqref{eq:representation-formula-zero-field-cond} is continuous across the boundary \(\Gamma\). For simplicity, let \(t(y) = \pdiff_{\vect{n}(y)} u(y)\) and define an integral operator \(V\) to represent this component as $$ Vt = (Vt(y))(x) = \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y). $$
The double layer potential $$ \int_{\Gamma} \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right] u(y) \intd o(y) $$ in \eqref{eq:representation-formula-zero-field-cond} depends on from which direction, i.e. interior or exterior, it approaches to the boundary. This discontinuous behavior is governed by the following theorem.
Theorem Let \(\phi \in C(\Gamma)\) be the double layer charge density and $u(x)$ be the double layer potential, which is given as $$ u(x) = \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \quad (x \in \Omega), $$ where \(K(x, y) = \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right]\). The restrictions of \(u\) to \(\Omega\) and \(\Omega' = \mathbb{R}^n\backslash\Omega\) both have continuous extension to \(\overline{\Omega}\) and \(\overline{\Omega}'\) respectively. Then \(u_{\varepsilon}(x) = u(x + \varepsilon \vect{n}(x))\) with \(x \in \Gamma\) converges uniformly to \(u_{-}\) and \(u_{+}\) when \(\varepsilon \longrightarrow 0^{-}\) and \(\varepsilon \longrightarrow 0^{+}\), where
\begin{equation} \begin{aligned} u_{-}(x) &= -\frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \\ u_{+}(x) &= \frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}
We then define the compact integral operator \(T_K\) as follows, which maps a bounded function to continuous function:
\begin{equation} T_K\phi(x) = (T_K\phi(y))(x) = \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \quad (x \in \Gamma). \label{eq:tk-operator} \end{equation}
For the components in the normal derivative of the representation formula in Equation \eqref{eq:normal-derivative-formula-zero-field-cond}, we introduce an integral operator \(D\) with a hyper-singular kernel as $$ Du = -\int_{\Gamma} \pdiff_{\vect{n}(x)} \left\{ \pdiff_{\vect{n}(y)}[\gamma(x,y)] \right\} u(y) \intd o(y). $$ Then let $K^{*}(x, y) = \pdiff_{\vect{n}(x)} \left[\gamma(x,y)\right] $, which has the following property:
\begin{equation} K^{*}(x, y) = K(y, x) = -K(x, y). \label{eq:symmetry-of-k} \end{equation}
Let $$ \psi(x) = \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \quad (x \in \Omega) $$ approach to the boundary, we have similar results as the above theorem:
\begin{equation} \begin{aligned} \psi_{-}(x) &= \frac{1}{2} \phi(x) + \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \\ \psi_{+}(x) &= -\frac{1}{2} \phi(x) + \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}
Then a new compact integral operator \(T_{K^{*}}\) is defined as
\begin{equation} T_{K^{*}}\phi(x) = (T_{K^{*}}\phi(y))(x) = \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \quad (x \in \Gamma). \label{eq:tk-star-operator} \end{equation}
Up to now, we have defined four integral operators, \(V\), \(D\), \(T_K\) and \(T_{K^{*}}\). We further introduce Calderón projector, i.e. the Dirichlet-trace \(\gamma_0\) and the Neumann-trace \(\gamma_1\), which are defined as
\begin{equation} \begin{aligned} \gamma_0[u](x) &=\lim_{\varepsilon \rightarrow 0^{-}} u(x + \varepsilon\vect{n}(x)) \\ \gamma_1[u](x) &= \lim_{\varepsilon \rightarrow 0^{-}} t(x + \varepsilon\vect{n}(x)) \end{aligned} \quad (x \in \Gamma). \label{eq:calderon-projector} \end{equation}
Finally, the boundary integral equations can be represented as
\begin{equation} \begin{cases} \gamma_0[u] = \frac{1}{2}\gamma_0[u] - T_K \gamma_0[u] + V\gamma_1[u] \\ \gamma_1[u] = D\gamma_0[u] + \frac{1}{2}\gamma_1[u] + T_{K^{*}} \gamma_1[u] \end{cases} \quad (x \in \Gamma). \label{eq:boundary-integral-equations} \end{equation}
It is more compact if written in matrix form:
\begin{equation} \begin{pmatrix} \gamma_0[u] \\ \gamma_1[u] \end{pmatrix} = \begin{pmatrix} \frac{1}{2}I - T_K & V \\ D & \frac{1}{2}I + T_{K^{*}} \end{pmatrix} \begin{pmatrix} \gamma_0[u] \\ \gamma_1[u] \end{pmatrix} \quad (x \in \Gamma). \label{eq:boundary-integral-equations-in-matrix-form} \end{equation}
Summary
In this article, we introduced the corner stones of BEM, namely fundamental solution, representation formula and boundary integral equations. The convolution concept adopted in the representation formula is explained and clarified. By introducing four integral operators, \(V\), \(D\), \(T_K\) and \(T_{K^{*}}\), the boundary integral equations are obtained in a compact matrix form. In our next post, we'll reveal more properties of the two compact operators \(T_K\) and \(T_{K^{*}}\), which are a pair of adjoint operators in the variational formulation of the boundary integral equations, and are conjugate transpose to each other in the Galerkin discretization.
References
1 “Cauchy Boundary Condition.” 2017. Wikipedia. https://en.wikipedia.org/w/index.php?title=Cauchy_boundary_condition&oldid=775884091.
Introduction to boundary integral equations in BEM的更多相关文章
- Adjoint operators $T_K$ and $T_{K^{*}}$ in BEM
In our last article, we introduced four integral operators in the boundary integral equations in BEM ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
- Theorems for existence and uniqueness of variational problem
Introduction Among simulation engineers, it is well accepted that the solution of a PDE can be envis ...
- A Personal Selection of Books on E lectromagnetics and Computational E lectromagnetics---David B. Davidson
链接. General Books on Electromagnetics When our department recently reviewed our junior-level text, w ...
- 数学类杂志SCI2013-2014影响因子
ISSN Abbreviated Journal Title Full Title Category Subcategory Country total Cites IF 2013-20 ...
- mit课程ocw-mathematics
https://ocw.mit.edu/courses/find-by-topic/#cat=mathematics Course # Course Title Level 1.010 Uncerta ...
- 以数之名:In Praise of APL 后记
原文:http://www.jsoftware.com/papers/perlis77.htm 标题:In Praise of APL: A Language for Lyrical Programm ...
- A Multigrid Tutorial中涉及到的难点词汇
Multigrid Tutorial中涉及的词汇: Elliptic PDEs 椭圆型偏微分方程 Lawrence Livermore National Laboratory 劳伦斯利福摩尔国家实验室 ...
- Maple拥有优秀的符号计算和数值计算能力
https://www.maplesoft.com/products/maple/ Maple高级应用和经典实例: https://wenku.baidu.com/view/f246962107221 ...
随机推荐
- python用类装饰函数的一个有趣实现
class RunningLog: def __init__(self,func): self._func=func self._func_name = func.__name__ def __cal ...
- PCM EQ DRC 音频处理
PCM Pulse-code modulation的缩写,中文译名是脉冲编码调制.(I2S仅仅是PCM的一个分支,接口定义都是一样的, I2S的采样频率一般为44.1KHZ和48KHZ做,PCM采样频 ...
- 统一门户与业务系统的sso整合技术方案(单点登录)
一.单点登录(SSO,Single Sign On)整合目前计划接入统一门户的所有业务系统均为基于JavaEE技术的B/S架构系统.由于统一门户的单点登录技术选用的是JA-SIG组织开发的Cas Se ...
- $Django cookies与session--解决无连接无状态问题, session配置
session作用: 会话保持,记住用户的登录状态(WEB网站,分布式架构) 作用(和cookie的区别) 避免了敏感信息保存在客户端,防止客户端修改cookie信息! -cookie:存储在客户端浏 ...
- 利用表格分页显示数据的js组件bootstrap datatable的使用
前面展示了datatable的简单使用,还可以通过bootstrap结合datatable来使用,这样可以进一步美化datatable插件 <!DOCTYPE html> <html ...
- Ex 7_17 考虑如下的网络(其中数字为对应边的容量)...第十三次作业
(a) 利用ford-fulkerson算法即可求出最大流和最小分割. (b) 剩余网络为 由S可达的顶点为A.B.可达T的顶点为C. (c) 瓶颈边有e(A,C),e(B,C). (d) 下图中不包 ...
- 24)django-信号
目录 1)django信号简介 2)django内置信号 3)django自定义信号 一:django信号简介 Django中提供了“信号调度”,用于在框架执行操作时解耦. 通俗来讲,就是一些动作发生 ...
- CSS在线字体库,外部字体的引用方法@font-face
@font-face是CSS3中的一个模块,他主要是把自己定义的Web字体嵌入到你的网页中,随着@font-face模块的出现,我们在Web的开发中使用字体不怕只能使用Web安全字体,你们当中或许有许 ...
- EasyUI Layout 布局
1.在整个页面上创建布局(Layout) <!DOCTYPE html> <html> <head> <title>吹泡泡的魚-主页</title ...
- php 统计某个目录中所有文件的大小
/** * @Purpose : 利用递归的方式统计目录的大小 * @Author : chrdai * @Method Name : dirSize() * @parameter : string ...