Boundary element method (BEM) is an effective tool compared to finite element method (FEM) for resolving those electromagnetic field problems including open domain and/or complex models with geometric details, especially those having large dimensional scale difference. Its basic idea is to construct the solution of a partial differential equation (PDE), like the 2nd order Laplace equation, by using a representation formula derived from the Green's 2nd identity. By approaching this representation formula to the domain boundary with some presumption on potential continuity, boundary integral equation can be obtained. This article explains how this equation is derived and introduces four integral operators thereof.

Fundamental solution

Let \(\Omega\) be an open domain in \(\mathbb{R}{^n}\) with boundary \(\pdiff\Omega = \Gamma = \Gamma_D \cup \Gamma_N\) and \(u\) be the electric potential such that

\begin{equation} \begin{aligned} -\Delta u(x) &= 0 \quad \forall x \in \Omega \\ u(x) &= g \quad \forall x \in \Gamma_D \\ \pdiff_{\vect{n}} u(x) &= 0 \quad \forall x \in \Gamma_N \end{aligned}. \label{eq:laplace-problem} \end{equation}

The fundamental solution to the above Laplace operator is

\begin{equation} \gamma(x) = \begin{cases} -\frac{1}{2\pi}\log\lvert x \rvert & (n = 2) \\ \frac{\lvert x \rvert^{2-n}}{(n-2)\omega_{n}} & (n > 2) \end{cases}, \label{eq:fundamental-solution} \end{equation}

where \(n\) is the space dimension and \(\omega_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}\). The fundamental solution is the potential response caused by a source charge density with unit Dirac distribution centered at the origin.

Representation formula

The electric potential distribution \(u\) in the domain \(\Omega\) can be represented as a combination of double and single layer potentials as

\begin{equation} u(x) = \int_{\Gamma} \pdiff_{\vect{n}(y)}[\gamma(x,y)] \left[ u(y) \right]_{\Gamma} \intd o(y) - \int_{\Gamma} \gamma(x,y) \left[ \pdiff_{\vect{n}(y)} u(y) \right]_{\Gamma} \intd o(y) \quad (x \in \Omega), \label{eq:representation-formula} \end{equation}

where \(\gamma(x, y) = \gamma(x - y)\), \(\vect{n}(y)\) is the outward unit normal vector at \(y \in \Gamma\), \(\intd o(y)\) is the surface integral element with respect to coordinate \(y\) and \([\cdot]_{\Gamma}\) represents the jump across the boundary \(\Gamma\), which is defined as

$$ [u(x)]_{\Gamma} = u\big\vert^{+}_{\vect{n}(x)} - u\big\vert^{-}_{\vect{n}(x)}. $$

Remark

  1. It can be seen that the electric potential \(u\) in the domain \(\Omega\) is represented as a convolution between the fundamental solution \(\gamma(x)\) and source layer charges configured on the domain boundary \(\Gamma\), which is the same as the convolution between an unit impulse response function and source excitation exhibited in electric circuit theory. The difference is for the electrostatic Laplace problem, the convolution is carried out in space domain, while in circuit theory it is in time domain.
  2. Convolution implies that a system's response should be linearly dependent on the source excitation. Therefore, the total response can be given as a linear superposition of the contributions from continuously distributed sources.
  3. Accordingly, the medium described by the PDE should be linear, homogeneous (spatial invariant) and time invariant. We should also note that if the medium's parameter is inhomogeneous but time invariant, hence the response linearly depends on a source located at a specified position. Then the fundamental solution changes its form when the source changes position. This is because the space loses symmetry.

Because the representation formula is a corner stone for BEM, BEM can only be used for linear and homogeneous medium. In addition, BEM can handle open domain problem. These two factors render BEM quite suitable for solving electromagnetic field problems with a large air box, which are usually difficult for FEM.

Boundary integral equation and integral operators

If we assume a constant zero field condition outside the domain \(\Omega\), i.e. \(u(x) \big\vert_{\mathbb{R}^n\backslash\Omega} \equiv 0\), which is called direct method, the representation formula becomes

\begin{equation} u(x) = -\int_{\Gamma} \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right] u(y) \intd o(y) + \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega). \label{eq:representation-formula-zero-field-cond} \end{equation}

Its normal derivative is

\begin{equation} \pdiff_{\vect{n}(x)} u(x) = -\int_{\Gamma} \pdiff_{\vect{n}(x)} \left\{ \pdiff_{\vect{n}(y)}[\gamma(x,y)] \right\} u(y) \intd o(y) + \int_{\Gamma} \pdiff_{\vect{n}(x)} \left[ \gamma(x,y) \right] \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega). \label{eq:normal-derivative-formula-zero-field-cond} \end{equation}

When \(u(x)\) and \(\pdiff_{\vect{n}(x)} u(x)\) approach to the boundary \(\Gamma_D\) and \(\Gamma_N\) respectively, the Cauchy data 1 are obtained, which specify both the function value and normal derivative on the boundary of the domain. They can be used to match the already given Dirichlet and homogeneous Neumann boundary conditions in \eqref{eq:laplace-problem} and hence the boundary integral equation can be obtained. However, before presenting its formulation, we need to clarify the behavior of single and double layer potentials near the boundary.

When approaching to the boundary, the single layer potential $$ \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega) $$ in \eqref{eq:representation-formula-zero-field-cond} is continuous across the boundary \(\Gamma\). For simplicity, let \(t(y) = \pdiff_{\vect{n}(y)} u(y)\) and define an integral operator \(V\) to represent this component as $$ Vt = (Vt(y))(x) = \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y). $$

The double layer potential $$ \int_{\Gamma} \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right] u(y) \intd o(y) $$ in \eqref{eq:representation-formula-zero-field-cond} depends on from which direction, i.e. interior or exterior, it approaches to the boundary. This discontinuous behavior is governed by the following theorem.

Theorem Let \(\phi \in C(\Gamma)\) be the double layer charge density and $u(x)$ be the double layer potential, which is given as $$ u(x) = \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \quad (x \in \Omega), $$ where \(K(x, y) = \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right]\). The restrictions of \(u\) to \(\Omega\) and \(\Omega' = \mathbb{R}^n\backslash\Omega\) both have continuous extension to \(\overline{\Omega}\) and \(\overline{\Omega}'\) respectively. Then \(u_{\varepsilon}(x) = u(x + \varepsilon \vect{n}(x))\) with \(x \in \Gamma\) converges uniformly to \(u_{-}\) and \(u_{+}\) when \(\varepsilon \longrightarrow 0^{-}\) and \(\varepsilon \longrightarrow 0^{+}\), where

\begin{equation} \begin{aligned} u_{-}(x) &= -\frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \\ u_{+}(x) &= \frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}

We then define the compact integral operator \(T_K\) as follows, which maps a bounded function to continuous function:

\begin{equation} T_K\phi(x) = (T_K\phi(y))(x) = \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \quad (x \in \Gamma). \label{eq:tk-operator} \end{equation}

For the components in the normal derivative of the representation formula in Equation \eqref{eq:normal-derivative-formula-zero-field-cond}, we introduce an integral operator \(D\) with a hyper-singular kernel as $$ Du = -\int_{\Gamma} \pdiff_{\vect{n}(x)} \left\{ \pdiff_{\vect{n}(y)}[\gamma(x,y)] \right\} u(y) \intd o(y). $$ Then let $K^{*}(x, y) = \pdiff_{\vect{n}(x)} \left[\gamma(x,y)\right] $, which has the following property:

\begin{equation} K^{*}(x, y) = K(y, x) = -K(x, y). \label{eq:symmetry-of-k} \end{equation}

Let $$ \psi(x) = \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \quad (x \in \Omega) $$ approach to the boundary, we have similar results as the above theorem:

\begin{equation} \begin{aligned} \psi_{-}(x) &= \frac{1}{2} \phi(x) + \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \\ \psi_{+}(x) &= -\frac{1}{2} \phi(x) + \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}

Then a new compact integral operator \(T_{K^{*}}\) is defined as

\begin{equation} T_{K^{*}}\phi(x) = (T_{K^{*}}\phi(y))(x) = \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \quad (x \in \Gamma). \label{eq:tk-star-operator} \end{equation}

Up to now, we have defined four integral operators, \(V\), \(D\), \(T_K\) and \(T_{K^{*}}\). We further introduce Calderón projector, i.e. the Dirichlet-trace \(\gamma_0\) and the Neumann-trace \(\gamma_1\), which are defined as

\begin{equation} \begin{aligned} \gamma_0[u](x) &=\lim_{\varepsilon \rightarrow 0^{-}} u(x + \varepsilon\vect{n}(x)) \\ \gamma_1[u](x) &= \lim_{\varepsilon \rightarrow 0^{-}} t(x + \varepsilon\vect{n}(x)) \end{aligned} \quad (x \in \Gamma). \label{eq:calderon-projector} \end{equation}

Finally, the boundary integral equations can be represented as

\begin{equation} \begin{cases} \gamma_0[u] = \frac{1}{2}\gamma_0[u] - T_K \gamma_0[u] + V\gamma_1[u] \\ \gamma_1[u] = D\gamma_0[u] + \frac{1}{2}\gamma_1[u] + T_{K^{*}} \gamma_1[u] \end{cases} \quad (x \in \Gamma). \label{eq:boundary-integral-equations} \end{equation}

It is more compact if written in matrix form:

\begin{equation} \begin{pmatrix} \gamma_0[u] \\ \gamma_1[u] \end{pmatrix} = \begin{pmatrix} \frac{1}{2}I - T_K & V \\ D & \frac{1}{2}I + T_{K^{*}} \end{pmatrix} \begin{pmatrix} \gamma_0[u] \\ \gamma_1[u] \end{pmatrix} \quad (x \in \Gamma). \label{eq:boundary-integral-equations-in-matrix-form} \end{equation}

Summary

In this article, we introduced the corner stones of BEM, namely fundamental solution, representation formula and boundary integral equations. The convolution concept adopted in the representation formula is explained and clarified. By introducing four integral operators, \(V\), \(D\), \(T_K\) and \(T_{K^{*}}\), the boundary integral equations are obtained in a compact matrix form. In our next post, we'll reveal more properties of the two compact operators \(T_K\) and \(T_{K^{*}}\), which are a pair of adjoint operators in the variational formulation of the boundary integral equations, and are conjugate transpose to each other in the Galerkin discretization.

References

Introduction to boundary integral equations in BEM的更多相关文章

  1. Adjoint operators $T_K$ and $T_{K^{*}}$ in BEM

    In our last article, we introduced four integral operators in the boundary integral equations in BEM ...

  2. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

  3. Theorems for existence and uniqueness of variational problem

    Introduction Among simulation engineers, it is well accepted that the solution of a PDE can be envis ...

  4. A Personal Selection of Books on E lectromagnetics and Computational E lectromagnetics---David B. Davidson

    链接. General Books on Electromagnetics When our department recently reviewed our junior-level text, w ...

  5. 数学类杂志SCI2013-2014影响因子

    ISSN Abbreviated Journal Title Full Title Category Subcategory Country total Cites IF        2013-20 ...

  6. mit课程ocw-mathematics

    https://ocw.mit.edu/courses/find-by-topic/#cat=mathematics Course # Course Title Level 1.010 Uncerta ...

  7. 以数之名:In Praise of APL 后记

    原文:http://www.jsoftware.com/papers/perlis77.htm 标题:In Praise of APL: A Language for Lyrical Programm ...

  8. A Multigrid Tutorial中涉及到的难点词汇

    Multigrid Tutorial中涉及的词汇: Elliptic PDEs 椭圆型偏微分方程 Lawrence Livermore National Laboratory 劳伦斯利福摩尔国家实验室 ...

  9. Maple拥有优秀的符号计算和数值计算能力

    https://www.maplesoft.com/products/maple/ Maple高级应用和经典实例: https://wenku.baidu.com/view/f246962107221 ...

随机推荐

  1. 【转】Java HashMap的死循环

    问题的症状 从前我们的Java代码因为一些原因使用了HashMap这个东西,但是当时的程序是单线程的,一切都没有问题.后来,我们的程序性能有问题,所以需要变成多线程的,于是,变成多线程后到了线上,发现 ...

  2. ES--01

    ES概念: 垂直搜索(站内搜索) 什么是全文检索和Lucene? 1 全文检索 倒排索引 2 Lucene 就是一个jar包 里面包含了封装好的各种简历倒排索引 以及进行搜索的代码 包括各种算法 我们 ...

  3. jqueryui组件progressbar进度条和日期组件datepickers的简单使用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. MySQL的连接数

    我使用的数据库,没有针对其进行其他相关设置,最近经常出现连接异常,现象为太多的连接. MySQL查看最大连接数和修改最大连接数 1.查看最大连接数(可通过show variables查看其他的全局参数 ...

  5. jqGrid后台交互样例

    schoolManageGrid = $("#jqGrid").jqGrid({ url : ctx.path+"/api/school/querySchools&quo ...

  6. 30个mysql千万级大数据SQL查询优化技巧详解

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  7. 【进阶1-3期】JavaScript深入之内存空间详细图解(转)

    这是我在公众号(高级前端进阶)看到的文章,现在做笔记 https://mp.weixin.qq.com/s/x4ZOYysb9XdT1grJbBMVkg 今天介绍的是JS内存空间,了解内存空间中的堆和 ...

  8. SQL Server 2012-2016-2017 简体中文版下载和序列号

    注:本文来源于<SQL Server 2012-2016-2017 简体中文版下载和序列号> SqlServer 2017 下载地址及密钥 下载地址:ed2k://|file|cn_sql ...

  9. Scratch 2.0-Find The Mouse 发布!

    日期:2018.8.26 星期日 博客期:007 今天随便写了一个小型游戏程序,哈哈!虽然小,但用到的逻辑还是有一定水平的.呼~毕竟就这一下子也写不出来微软一样的公司嘛!哈哈,截图放上来! 游戏分为四 ...

  10. cordova AndroidStudio3.0 升级报错问题

    http://blog.csdn.net/z_Xiaozuo/article/details/78962701 ionic3 打包 安卓项目遇到的问题,当时比较冲忙升级了下android studio ...