Introduction to boundary integral equations in BEM
Boundary element method (BEM) is an effective tool compared to finite element method (FEM) for resolving those electromagnetic field problems including open domain and/or complex models with geometric details, especially those having large dimensional scale difference. Its basic idea is to construct the solution of a partial differential equation (PDE), like the 2nd order Laplace equation, by using a representation formula derived from the Green's 2nd identity. By approaching this representation formula to the domain boundary with some presumption on potential continuity, boundary integral equation can be obtained. This article explains how this equation is derived and introduces four integral operators thereof.
Fundamental solution
Let \(\Omega\) be an open domain in \(\mathbb{R}{^n}\) with boundary \(\pdiff\Omega = \Gamma = \Gamma_D \cup \Gamma_N\) and \(u\) be the electric potential such that
\begin{equation} \begin{aligned} -\Delta u(x) &= 0 \quad \forall x \in \Omega \\ u(x) &= g \quad \forall x \in \Gamma_D \\ \pdiff_{\vect{n}} u(x) &= 0 \quad \forall x \in \Gamma_N \end{aligned}. \label{eq:laplace-problem} \end{equation}
The fundamental solution to the above Laplace operator is
\begin{equation} \gamma(x) = \begin{cases} -\frac{1}{2\pi}\log\lvert x \rvert & (n = 2) \\ \frac{\lvert x \rvert^{2-n}}{(n-2)\omega_{n}} & (n > 2) \end{cases}, \label{eq:fundamental-solution} \end{equation}
where \(n\) is the space dimension and \(\omega_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}\). The fundamental solution is the potential response caused by a source charge density with unit Dirac distribution centered at the origin.
Representation formula
The electric potential distribution \(u\) in the domain \(\Omega\) can be represented as a combination of double and single layer potentials as
\begin{equation} u(x) = \int_{\Gamma} \pdiff_{\vect{n}(y)}[\gamma(x,y)] \left[ u(y) \right]_{\Gamma} \intd o(y) - \int_{\Gamma} \gamma(x,y) \left[ \pdiff_{\vect{n}(y)} u(y) \right]_{\Gamma} \intd o(y) \quad (x \in \Omega), \label{eq:representation-formula} \end{equation}
where \(\gamma(x, y) = \gamma(x - y)\), \(\vect{n}(y)\) is the outward unit normal vector at \(y \in \Gamma\), \(\intd o(y)\) is the surface integral element with respect to coordinate \(y\) and \([\cdot]_{\Gamma}\) represents the jump across the boundary \(\Gamma\), which is defined as
$$ [u(x)]_{\Gamma} = u\big\vert^{+}_{\vect{n}(x)} - u\big\vert^{-}_{\vect{n}(x)}. $$
Remark
- It can be seen that the electric potential \(u\) in the domain \(\Omega\) is represented as a convolution between the fundamental solution \(\gamma(x)\) and source layer charges configured on the domain boundary \(\Gamma\), which is the same as the convolution between an unit impulse response function and source excitation exhibited in electric circuit theory. The difference is for the electrostatic Laplace problem, the convolution is carried out in space domain, while in circuit theory it is in time domain.
- Convolution implies that a system's response should be linearly dependent on the source excitation. Therefore, the total response can be given as a linear superposition of the contributions from continuously distributed sources.
- Accordingly, the medium described by the PDE should be linear, homogeneous (spatial invariant) and time invariant. We should also note that if the medium's parameter is inhomogeneous but time invariant, hence the response linearly depends on a source located at a specified position. Then the fundamental solution changes its form when the source changes position. This is because the space loses symmetry.
Because the representation formula is a corner stone for BEM, BEM can only be used for linear and homogeneous medium. In addition, BEM can handle open domain problem. These two factors render BEM quite suitable for solving electromagnetic field problems with a large air box, which are usually difficult for FEM.
Boundary integral equation and integral operators
If we assume a constant zero field condition outside the domain \(\Omega\), i.e. \(u(x) \big\vert_{\mathbb{R}^n\backslash\Omega} \equiv 0\), which is called direct method, the representation formula becomes
\begin{equation} u(x) = -\int_{\Gamma} \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right] u(y) \intd o(y) + \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega). \label{eq:representation-formula-zero-field-cond} \end{equation}
Its normal derivative is
\begin{equation} \pdiff_{\vect{n}(x)} u(x) = -\int_{\Gamma} \pdiff_{\vect{n}(x)} \left\{ \pdiff_{\vect{n}(y)}[\gamma(x,y)] \right\} u(y) \intd o(y) + \int_{\Gamma} \pdiff_{\vect{n}(x)} \left[ \gamma(x,y) \right] \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega). \label{eq:normal-derivative-formula-zero-field-cond} \end{equation}
When \(u(x)\) and \(\pdiff_{\vect{n}(x)} u(x)\) approach to the boundary \(\Gamma_D\) and \(\Gamma_N\) respectively, the Cauchy data 1 are obtained, which specify both the function value and normal derivative on the boundary of the domain. They can be used to match the already given Dirichlet and homogeneous Neumann boundary conditions in \eqref{eq:laplace-problem} and hence the boundary integral equation can be obtained. However, before presenting its formulation, we need to clarify the behavior of single and double layer potentials near the boundary.
When approaching to the boundary, the single layer potential $$ \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y) \quad (x \in \Omega) $$ in \eqref{eq:representation-formula-zero-field-cond} is continuous across the boundary \(\Gamma\). For simplicity, let \(t(y) = \pdiff_{\vect{n}(y)} u(y)\) and define an integral operator \(V\) to represent this component as $$ Vt = (Vt(y))(x) = \int_{\Gamma} \gamma(x,y) \pdiff_{\vect{n}(y)} u(y) \intd o(y). $$
The double layer potential $$ \int_{\Gamma} \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right] u(y) \intd o(y) $$ in \eqref{eq:representation-formula-zero-field-cond} depends on from which direction, i.e. interior or exterior, it approaches to the boundary. This discontinuous behavior is governed by the following theorem.
Theorem Let \(\phi \in C(\Gamma)\) be the double layer charge density and $u(x)$ be the double layer potential, which is given as $$ u(x) = \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \quad (x \in \Omega), $$ where \(K(x, y) = \pdiff_{\vect{n}(y)} \left[\gamma(x,y)\right]\). The restrictions of \(u\) to \(\Omega\) and \(\Omega' = \mathbb{R}^n\backslash\Omega\) both have continuous extension to \(\overline{\Omega}\) and \(\overline{\Omega}'\) respectively. Then \(u_{\varepsilon}(x) = u(x + \varepsilon \vect{n}(x))\) with \(x \in \Gamma\) converges uniformly to \(u_{-}\) and \(u_{+}\) when \(\varepsilon \longrightarrow 0^{-}\) and \(\varepsilon \longrightarrow 0^{+}\), where
\begin{equation} \begin{aligned} u_{-}(x) &= -\frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \\ u_{+}(x) &= \frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}
We then define the compact integral operator \(T_K\) as follows, which maps a bounded function to continuous function:
\begin{equation} T_K\phi(x) = (T_K\phi(y))(x) = \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \quad (x \in \Gamma). \label{eq:tk-operator} \end{equation}
For the components in the normal derivative of the representation formula in Equation \eqref{eq:normal-derivative-formula-zero-field-cond}, we introduce an integral operator \(D\) with a hyper-singular kernel as $$ Du = -\int_{\Gamma} \pdiff_{\vect{n}(x)} \left\{ \pdiff_{\vect{n}(y)}[\gamma(x,y)] \right\} u(y) \intd o(y). $$ Then let $K^{*}(x, y) = \pdiff_{\vect{n}(x)} \left[\gamma(x,y)\right] $, which has the following property:
\begin{equation} K^{*}(x, y) = K(y, x) = -K(x, y). \label{eq:symmetry-of-k} \end{equation}
Let $$ \psi(x) = \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \quad (x \in \Omega) $$ approach to the boundary, we have similar results as the above theorem:
\begin{equation} \begin{aligned} \psi_{-}(x) &= \frac{1}{2} \phi(x) + \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \\ \psi_{+}(x) &= -\frac{1}{2} \phi(x) + \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}
Then a new compact integral operator \(T_{K^{*}}\) is defined as
\begin{equation} T_{K^{*}}\phi(x) = (T_{K^{*}}\phi(y))(x) = \int_{\Gamma} K^{*}(x, y) \phi(y) \intd o(y) \quad (x \in \Gamma). \label{eq:tk-star-operator} \end{equation}
Up to now, we have defined four integral operators, \(V\), \(D\), \(T_K\) and \(T_{K^{*}}\). We further introduce Calderón projector, i.e. the Dirichlet-trace \(\gamma_0\) and the Neumann-trace \(\gamma_1\), which are defined as
\begin{equation} \begin{aligned} \gamma_0[u](x) &=\lim_{\varepsilon \rightarrow 0^{-}} u(x + \varepsilon\vect{n}(x)) \\ \gamma_1[u](x) &= \lim_{\varepsilon \rightarrow 0^{-}} t(x + \varepsilon\vect{n}(x)) \end{aligned} \quad (x \in \Gamma). \label{eq:calderon-projector} \end{equation}
Finally, the boundary integral equations can be represented as
\begin{equation} \begin{cases} \gamma_0[u] = \frac{1}{2}\gamma_0[u] - T_K \gamma_0[u] + V\gamma_1[u] \\ \gamma_1[u] = D\gamma_0[u] + \frac{1}{2}\gamma_1[u] + T_{K^{*}} \gamma_1[u] \end{cases} \quad (x \in \Gamma). \label{eq:boundary-integral-equations} \end{equation}
It is more compact if written in matrix form:
\begin{equation} \begin{pmatrix} \gamma_0[u] \\ \gamma_1[u] \end{pmatrix} = \begin{pmatrix} \frac{1}{2}I - T_K & V \\ D & \frac{1}{2}I + T_{K^{*}} \end{pmatrix} \begin{pmatrix} \gamma_0[u] \\ \gamma_1[u] \end{pmatrix} \quad (x \in \Gamma). \label{eq:boundary-integral-equations-in-matrix-form} \end{equation}
Summary
In this article, we introduced the corner stones of BEM, namely fundamental solution, representation formula and boundary integral equations. The convolution concept adopted in the representation formula is explained and clarified. By introducing four integral operators, \(V\), \(D\), \(T_K\) and \(T_{K^{*}}\), the boundary integral equations are obtained in a compact matrix form. In our next post, we'll reveal more properties of the two compact operators \(T_K\) and \(T_{K^{*}}\), which are a pair of adjoint operators in the variational formulation of the boundary integral equations, and are conjugate transpose to each other in the Galerkin discretization.
References
1 “Cauchy Boundary Condition.” 2017. Wikipedia. https://en.wikipedia.org/w/index.php?title=Cauchy_boundary_condition&oldid=775884091.
Introduction to boundary integral equations in BEM的更多相关文章
- Adjoint operators $T_K$ and $T_{K^{*}}$ in BEM
In our last article, we introduced four integral operators in the boundary integral equations in BEM ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
- Theorems for existence and uniqueness of variational problem
Introduction Among simulation engineers, it is well accepted that the solution of a PDE can be envis ...
- A Personal Selection of Books on E lectromagnetics and Computational E lectromagnetics---David B. Davidson
链接. General Books on Electromagnetics When our department recently reviewed our junior-level text, w ...
- 数学类杂志SCI2013-2014影响因子
ISSN Abbreviated Journal Title Full Title Category Subcategory Country total Cites IF 2013-20 ...
- mit课程ocw-mathematics
https://ocw.mit.edu/courses/find-by-topic/#cat=mathematics Course # Course Title Level 1.010 Uncerta ...
- 以数之名:In Praise of APL 后记
原文:http://www.jsoftware.com/papers/perlis77.htm 标题:In Praise of APL: A Language for Lyrical Programm ...
- A Multigrid Tutorial中涉及到的难点词汇
Multigrid Tutorial中涉及的词汇: Elliptic PDEs 椭圆型偏微分方程 Lawrence Livermore National Laboratory 劳伦斯利福摩尔国家实验室 ...
- Maple拥有优秀的符号计算和数值计算能力
https://www.maplesoft.com/products/maple/ Maple高级应用和经典实例: https://wenku.baidu.com/view/f246962107221 ...
随机推荐
- 无线桥接(WDS)如何设置?
一.WDS使用介绍 无线桥接(WDS)可以将多台无线路由器通过无线方式互联,从而将无线信号扩展放大.无线终端在移动过程中可以自动切换较好的信号,实现无线漫游. 本文指导将TL-WR740N当作副路由器 ...
- Content-Type的几种常用数据编码格式
Content-Type,内容类型,一般是指网页中存在的Content-Type,ContentType属性指定请求和响应的HTTP内容类型.如果未指定 ContentType,默认为text/htm ...
- tomcat 嵌入式
背景 开源世界真是有意思,竟然还有这种玩法.以前一直想bs程序如何像cs程序作为安装包形式,这个就是个解决方案. 知识点 将tomcat嵌入到主程序中进行运行,而不是像以前将一个web项目copy到t ...
- css3时钟
参考资料: 奇舞团: http://www.75team.com/archives/851 DEMO:demo 截图: 代码: <!DOCTYPE html> <html lang= ...
- 023_nginx跨域问题
什么是跨域? 使用js获取数据时,涉及到的两个url只要协议.域名.端口有任何一个不同,都被当作是不同的域,相互访问就会有跨域问题.例如客户端的域名是www.redis.com.cn,而请求的域名是w ...
- python获取esxi的磁盘使用率信息
#!/usr/bin/python3 #coding:utf-8 #Author: ziming """ 只用于模拟开发功能测试 """ f ...
- JS,Jquery获取各种屏幕的宽度和高度(转载)
原文:https://www.cnblogs.com/fuyuanming/articles/5453756.html 1.JS 网页可见区域宽: document.body.clientWidth ...
- 51nod--1265 四点共面 (计算几何基础, 点积, 叉积)
题目: 1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4 ...
- Python学习 --- 列表
list 函数可以将 序列变为列表 列表操作: 1 . 元素赋值, 根据索引,可以直接修改 2 . 删除元素, del x[i] 3 . 分片赋值, name[1:] = list (' '), 可以 ...
- Mysql 数据库安装与配置详解
目录 一.概述 二.MySQL安装 三.安装成功验证 四.NavicatforMySQL下载及使用 一.概述 MySQL版本:5.7.17 下载地址:http://rj.baidu.com/soft/ ...