洛谷P2858奶牛零食 题解
这个题一开始能看出来是一道动态规划的题目,但是并不知道如何写状态转移方程,但是我们可以想一想这个题应该是一道区间DP,而区间DP的特点就是状态转移方程一般跟该区间的左节点和右节点或者中间断点有关,因为我们一次是从两个点中选一个而原题中的a值是(n-(left-right)),因此我们就可以得出状态转移方程
:
dp[i][j]=max(dp[i][j-]+data[j]*(n-(j-i)),dp[i+][j]+data[i]*(n-(j-i)));
知道了这个就完了吗,当然不是,首先我们要预处理出dp[i][i]=data[i]
然后我们再看方程,方程是有j的前一位和i的后一位推出来的,因此我们要让i从后往前推,j从前往后推。所以这个题给我们一个启示,仅仅得出状态转移方程是远远不够的,用什么方式推也很重要。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int data[],dp[][],maxn=;
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&data[i]),dp[i][i]=data[i];
for(int i=n;i>=;i--)
{
for(int j=i;j<=n;j++)
dp[i][j]=max(dp[i][j-]+data[j]*(n-(j-i)),dp[i+][j]+data[i]*(n-(j-i)));
}
cout<<dp[][n];
return ;
}
洛谷P2858奶牛零食 题解的更多相关文章
- 洛谷P2858 奶牛零食 题解 区间DP入门题
题目大意: 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了 \(N(1 \le N \le 2000)\) 份美味的零食来卖给奶牛们.每天约翰售出一份零 ...
- [洛谷p2858] 奶牛零食
题目链接: 点我 题目分析: 这是什么,区间dp吗?怎么大佬都在说区间dp的样子 完蛋区间dp都不知道是啥quq 于是使用了玄学的姿势A过了这道题 设dp[i][j][0]表示第i天,左边选了j个,当 ...
- 洛谷 P2858 奶牛零食
https://www.luogu.org/problemnew/show/P2858 毫无疑问区间dp. ![区间dp入门] 我们定义dp[i][j]表示从i到j的最大收益,显然我们需要利用比较小的 ...
- 区间DP 洛谷P2858牛奶零食
题目链接 题意:你有n个货物从1-n依次排列,每天可以从两侧选一个出来卖,卖的价格是当天的天数乘该货物的初始价格,问这批货物卖完的最大价格 输入:第一行n,之后是n个货物的初始价值 这道题不能用贪心做 ...
- 洛谷 P1578 奶牛浴场 题解
题面 1.定义有效子矩形为内部不包含任何障碍点且边界与坐标轴平行的子矩形.如图所示,第一个是有效子矩形(尽管边界上有障碍点),第二个不是有效子矩形(因为内部含有障碍点). 2.极大有效子矩形:一个有效 ...
- 洛谷P2402 奶牛隐藏
洛谷P2402 奶牛隐藏 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛混乱的原因看题目描述) 题目描述 在一个农场里有n块田地. ...
- 洛谷2344 奶牛抗议(DP+BIT+离散化)
洛谷2344 奶牛抗议 本题地址:http://www.luogu.org/problem/show?pid=2344 题目背景 Generic Cow Protests, 2011 Feb 题目描述 ...
- 洛谷P2832 行路难 分析+题解代码【玄学最短路】
洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...
- 【洛谷P3960】列队题解
[洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...
随机推荐
- 数学基础IV 欧拉函数 Miller Rabin Pollard's rho 欧拉定理 行列式
找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(h ...
- 【kindle笔记】之 《明朝那些事儿》-2018-7-1
[kindle笔记]读书记录-总 最近在读这本书.之前在微信读书里断断续续读过,读到深处还想蹦起来做笔记那种.后来种种原因断了,再没续上. 现在又开始啦.最近还在重八兄造反阶段,还很早呢,有时候晚上玩 ...
- .net WCF WF4.5
花了两天时间学习使用WF,把一些遇到的问题记录下来,使用的环境是VS2017,网上的资料普遍太老了 需要注意,如果使用多项目同时启动的方式需要把WCF调整到WF启动顺序之上 1.怎么使用代码活动 新建 ...
- React Native之本地文件系统访问组件react-native-fs的介绍与使用
React Native之本地文件系统访问组件react-native-fs的介绍与使用 一,需求分析 1,需要将图片保存到本地相册: 2,需要创建文件,并对其进行读写 删除操作. 二,简单介绍 re ...
- Azure系列2.1.5 —— BlobOutputStream
(小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...
- [转帖]HPE的软件部分到底是谁的?
英国Micro Focus公司收购惠普旗下软件部门 http://www.gongkong.com/news/201710/369740.html 搞不清楚 现在ALM 到底是谁的资产了.. 据国外媒 ...
- PL/SQL如何调试sql语句、存储过程
一直以来,我总是在sql的工具,比如sql server.navicat等中执行sql语句来发现问题自己写的sql中的问题,结果被问起时,让人贻笑大方! 那么如何调试成白行的存储过程?如何调试成百行s ...
- day 7-11 初识MySQL数据库及安装密码设置破解
一. 什么是数据库 之前所学,数据要永久保存,比如用户注册的用户信息,都是保存于文件中,而文件只能存在于某一台机器上. 如果我们不考虑从文件中读取数据的效率问题,并且假设我们的程序所有的组件都运行在一 ...
- maven中jar下载失败
关键词:maven jar 错误描述:反编译时遇到 invalid LOC header (bad signature)的问题 aether-89969cb8-5741-44e3-be2c-74f90 ...
- 区分Python中的可变对象和不可变对象
参考: https://www.cnblogs.com/sun-haiyu/p/7096918.html """不过注意函数传参既不是传值也不是传引用,正确的叫法是传对象 ...