题目大意

​  给你一个无向图,每条边的两个方向的边权可能不同。要求找出一条欧拉回路使得路径上的边权的最大值最小。无解输出"NIE"。

  \(2\leq n\leq 1000,1\leq m\leq 2000\)

题解

​  我们先二分答案\(ans\),把边权大于\(ans\)的边删掉。

​  现在图中还剩下一些有向边和一些无向边,也就是说这是一个混合图。

​  混合图的欧拉回路怎么求?

​  先把无向边定向(方向任意),求出每个点的出度\(d1_i\)和入度\(d2_i\)。如果存在点\(i\)使得\(|d1_i-d2_i|\)为奇数,则无解。因为你怎么反向都不可能把\(d1_i-d2_i\)变成\(0\)。

​  然后把无向边按定向的反方向在图中连边,容量为\(1\)。对于一个点\(i\),如果\(d1_i>d2_i\),则连边\(i\text{->}T\),容量为\(\frac{d1_i-d2_i}{2}\),否则连边\(S\text{->}i\),容量为\(\frac{d2_i-d1_i}{2}\)。

​  最后跑一次最大流。如果满流就有解,否则无解。

  还要用并查集判一下是不是连通图。

​  为什么这是对的?每流过一条边就表示把这条边反向。对这个网络求最大流就是调整尽可能多的边。流量平衡就表示一个点的入度和出度相同。

​  这个图把边定向得到

​  

​  建图后跑最大流可以得到

  

​  把满流边反向后得到

  

​  这就是一个欧拉回路了

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<queue>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
struct list
{
int v[100010];
int w[100010];
int t[100010];
int h[1010];
int n;
void clear()
{
memset(h,0,sizeof h);
n=0;
}
void add(int x,int y,int z)
{
n++;
v[n]=y;
w[n]=z;
t[n]=h[x];
h[x]=n;
}
};
list l;
void add(int x,int y,int z)
{
l.add(x,y,z);
l.add(y,x,0);
}
int d[1010];
int S,T;
int bfs()
{
memset(d,-1,sizeof d);
queue<int> q;
q.push(S);
d[S]=0;
int x,i;
while(!q.empty())
{
x=q.front();
q.pop();
for(i=l.h[x];i;i=l.t[i])
if(l.w[i]&&d[l.v[i]]==-1)
{
d[l.v[i]]=d[x]+1;
if(l.v[i]==T)
return 1;
q.push(l.v[i]);
}
}
return 0;
}
int op(int x)
{
return ((x-1)^1)+1;
}
int dfs(int x,int flow)
{
if(x==T)
return flow;
int c,s=0,i;
for(i=l.h[x];i;i=l.t[i])
if(l.w[i]&&d[l.v[i]]==d[x]+1)
{
c=dfs(l.v[i],min(flow,l.w[i]));
s+=c;
flow-=c;
l.w[i]-=c;
l.w[op(i)]+=c;
if(!flow)
break;
}
return s;
}
int f[1010];
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
int lx[2010],ly[2010],w1[2010],w2[2010];
int d1[2010],d2[2010];
int c[2010];//方向
int n,m;
int abs(int x)
{
return x>0?x:-x;
}
int check(int p)
{
memset(d1,0,sizeof d1);
memset(d2,0,sizeof d2);
int i;
for(i=1;i<=n;i++)
f[i]=i;
for(i=1;i<=m;i++)
{
if(p<w1[i]&&p<w2[i])
return 0;
if(p>=w1[i])
{
c[i]=0;
d1[lx[i]]++;
d2[ly[i]]++;
f[find(lx[i])]=find(ly[i]);
}
else
{
c[i]=1;
d1[ly[i]]++;
d2[lx[i]]++;
f[find(lx[i])]=find(ly[i]);
}
}
for(i=1;i<=n;i++)
{
if(abs(d1[i]-d2[i])&1)
return 0;
if(i>1&&find(i)!=find(i-1))
return 0;
}
l.clear();
S=n+1;
T=n+2;
for(i=1;i<=m;i++)
if(p>=w1[i]&&p>=w2[i])
add(ly[i],lx[i],1);
// else
// add(lx[i],ly[i],1);
int s=0,ans=0;
for(i=1;i<=n;i++)
if(d1[i]>d2[i])
{
add(i,T,(d1[i]-d2[i])/2);
s+=(d1[i]-d2[i])/2;
}
else if(d1[i]<d2[i])
add(S,i,(d2[i]-d1[i])/2);
while(bfs())
ans+=dfs(S,0x7fffffff);
return ans==s;
}
int main()
{
// freopen("bzoj2095.in","r",stdin);
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=m;i++)
scanf("%d%d%d%d",&lx[i],&ly[i],&w1[i],&w2[i]);
int l=1,r=1001;
int mid;
while(l<r)
{
mid=(l+r)>>1;
if(check(mid))
r=mid;
else
l=mid+1;
}
if(l>1000)
printf("NIE\n");
else
printf("%d\n",l);
return 0;
}

【BZOJ2095】【POI2010】Bridge 网络流的更多相关文章

  1. BZOJ2095 POI2010 Bridges 【二分+混合图欧拉回路】

    BZOJ2095 POI2010 Bridges Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛 ...

  2. [BZOJ2095][Poi2010]Bridges 二分+网络流

    2095: [Poi2010]Bridges Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1187  Solved: 408[Submit][Sta ...

  3. 【BZOJ-2095】Bridge 最大流 + 混合图欧拉回路 + 二分

    2095: [Poi2010]Bridges Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 604  Solved: 218[Submit][Stat ...

  4. BZOJ2095 [Poi2010]Bridges

    首先二分答案...然后这张图变成了有一些有向边,有一些无向边 然后就是混合图欧拉回路的判断 我们知道如果是有向图,它存在欧拉回路的等价条件是所有点的出度等于入度 对于混合图...先不管有向边,把无向边 ...

  5. 【BZOJ2095】 Bridge

    Time Limit: 1000 ms   Memory Limit: 128 MB Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个 ...

  6. BZOJ2095:[POI2010]Bridges(最大流,欧拉图)

    Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛.现在YYD想骑单车从小岛1 ...

  7. bzoj2095: [Poi2010]Bridges(二分+混合图求欧拉回路)

    传送门 这篇题解讲的真吼->这里 首先我们可以二分一个答案,然后把所有权值小于这个答案的都加入图中 那么问题就转化为一张混合图(既有有向边又有无向边)中是否存在欧拉回路 首先 无向图存在欧拉回路 ...

  8. [BZOJ2095][Poi2010]Bridges 最大流(混合图欧拉回路)

    2095: [Poi2010]Bridges Time Limit: 10 Sec  Memory Limit: 259 MB Description YYD为了减肥,他来到了瘦海,这是一个巨大的海, ...

  9. bzoj千题计划228:bzoj2095: [Poi2010]Bridges

    http://www.lydsy.com/JudgeOnline/problem.php?id=2095 二分答案,判断是否存在混合图的欧拉回路 如果只有一个方向的风力<=mid,这条边就是单向 ...

随机推荐

  1. logstash采集与清洗数据到elasticsearch案例实战

    原文地址:https://www.2cto.com/kf/201610/560348.html Logstash的使用 logstash支持把配置写入文件 xxx.conf,然后通过读取配置文件来采集 ...

  2. Sparse Principal Component Analysis

    目录 背景: 部分符号 创新点 文章梗概 The LASSO AND THE ELASTIC NET 将PCA改造为回归问题 定理二 单个向量(无需进行SVD版本) 定理三 多个向量(无需进行SVD, ...

  3. vuex状态管理工具

    父子组件之间的通信  props传递  父 向子单向传递:且每次 父组件更新时  子组件的props会跟着更新: 如果需要 子组件把数据传递给父组件,就需要在子组件上绑定自定事件 在子组件使用this ...

  4. codeforces#1097 D. Makoto and a Blackboard(dp+期望)

    题意:现在有一个数写在黑板上,它以等概率转化为它的一个约数,可以是1,问经过k次转化后这个数的期望值 题解:如果这个数是一个素数的n次方,那么显然可以用动态规划来求这个数的答案,否则的话,就对每个素因 ...

  5. python中读取文件的read、readline、readlines方法区别

    #读取文件所有内容,返回字符串对象,python默认以文本方式读取文件,遇到结束符读取结束. fr = open('lenses.txt')read = fr.read()print(type(rea ...

  6. 第四章 MyBatis-SQL映射文件

    MyBatis 真正的强大在于映射语句,专注于SQL,功能强大,SQL映射的配置却是相当简单 SQL映射文件的几个顶级元素(按照定义的顺序) mapper - namespace cache - 配置 ...

  7. C# foreach内部原理

    我们知道使用foreach的一个要求是对象必须继承自IEnumerable接口 这样才可以进行迭代 那内部是怎么实现的呢 这个时候会将对应的foreach语句转换为一个while循环 并且通过Move ...

  8. MySQL之慢查询日志和通用查询

    MySQL中的日志包括:错误日志.二进制日志.通用查询日志.慢查询日志等等.这里主要介绍下比较常用的两个功能:通用查询日志和慢查询日志. 1.通用查询日志:记录建立的客户端连接和执行的语句. 2.慢查 ...

  9. h5小功能_classList和自定义属性data

    ###1.classList返回一个对象集 通过obj.classList.add()或obj.classList.remove()可操作对象的class属性值 classList.toggle( ) ...

  10. Java内存泄漏分析

    https://www.javatang.com/archives/2017/11/08/11582145.html?tdsourcetag=s_pcqq_aiomsg