洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)
题意
Sol
复习一下01分数规划
设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\)。可以二分一个答案\(k\),我们需要检查\(\sum \frac{a_i}{b_i} \geqslant k\)是否合法,移向之后变为\(\sum_{a_i} - k\sum_{b_i} \geqslant 0\)。把\(k * b_i\)加在出发点的点权上检查一下有没有负环就行了
#include<bits/stdc++.h>
#define Pair pair<int, double>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4001, mod = 998244353, INF = 2e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
vector<Pair> v[MAXN];
double a[MAXN], dis[MAXN];
int vis[MAXN], times[MAXN];
bool SPFA(int S, double k) {
queue<int> q; q.push(S);
for(int i = 1; i <= N; i++) vis[i] = 0, times[i] = 0, dis[i] = 0;
times[S]++;
while(!q.empty()) {
int p = q.front(); q.pop(); vis[p] = 0;
for(auto &sta : v[p]) {
int to = sta.fi; double w = sta.se;
if(chmax(dis[to], dis[p] + a[p] - k * w)) {
if(!vis[to]) q.push(to), vis[to] = 1, times[to]++;
if(times[to] > N) return 1;
}
}
}
return 0;
}
bool check(double val) {
for(int i = 1; i <= N; i++)
if(SPFA(i, val)) return 1;
return 0;
}
signed main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) a[i] = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), z = read();
v[x].push_back({y, z});
}
double l = -1e9, r = 1e9;
while(r - l > eps) {
double mid = (l + r) / 2;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.2lf", l);
return 0;
}
洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)的更多相关文章
- 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows
P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...
- 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解
题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...
- POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows
一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...
- 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...
- P2868 [USACO07DEC]观光奶牛Sightseeing Cows
P2868 [USACO07DEC]观光奶牛Sightseeing Cows [](https://www.cnblogs.com/images/cnblogs_com/Tony-Double-Sky ...
- [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- Luogu 2868 [USACO07DEC]观光奶牛Sightseeing Cows
01分数规划复习. 这东西有一个名字叫做最优比率环. 首先这个答案具有单调性,我们考虑如何检验. 设$\frac{\sum_{i = 1}^{n}F_i}{\sum_{i = 1}^{n}T_i} = ...
随机推荐
- 微信小程序wx.request接口
微信小程序wx.request接口 wx.request是小程序客户端与服务器端交互的接口 HTTPS 请求 一个微信小程序,只能同时(同时不能大于5个)有5个网络请求 wx.request(OBJE ...
- mysql数据统计技巧备忘录
mysql 作为常用数据库,操作贼六是必须的,对于数字操作相关的东西,那是相当方便,本节就来拎几个统计案例出来供参考! order订单表,样例如下: CREATE TABLE `t_order` ( ...
- 本地Oracle客户端11g升级12c导致PowerCenter无法连接ODBC数据源
问题: 本地Oracle客户端由11g-32bit升级为12c-64bit时,在PowerCenter Designer使用原来的ODBC连接导入数据库表时,发生如下错误: 原因: 原oracle11 ...
- [原创]K8 DB_Owner权限GetShell工具
2011-04-23 02:19:56| 分类: 原创工具 DB_Owner权限拿Shell工具[K.8]Author: QQ吻Team:Crack8_TeamBlog:http://qqhack8 ...
- IdentityServer4(5)- 包和构建
包和构建 IdentityServer有许多Nuget包组件 IdentityServer4 nuget | github 包含IdentityServer核心对象模型.服务和中间件.默认只包含了基于 ...
- Kubernetes 持续集成 SpringCloud
写在开始之前,在开始之前我们需要了解几个概念: 1.什么是持续集成? 持续集成是一种软件开发实践,即团队开发成员经常集成他们的工作,通常每个成员每天至少集成一次,也就意味着每天可能会发生多次集成.每次 ...
- sql server 性能调优之 当前用户请求分析 (1)
一. 概述 在生产数据库运行期间,有时我们需要查看当前用户会话状态或者是说数据库当前是否运行良好, 应用的场景比如:当运行的应用系统响应突然变慢时需要分析数据库的.或想分析当前的数据库是否繁忙,是否有 ...
- 全网最详细的基于Ubuntu14.04/16.04 + Anaconda2 / Anaconda3 + Python2.7/3.4/3.5/3.6安装Tensorflow详细步骤(图文)(博主推荐)
不多说,直接上干货! 前言 建议参照最新的tensorflow安装步骤(Linux,官方网站经常访问不是很稳定,所以给了一个github的地址): https://github.com ...
- 大数据入门基础系列之Hadoop1.X、Hadoop2.X和Hadoop3.X的多维度区别详解(博主推荐)
不多说,直接上干货! 在前面的博文里,我已经介绍了 大数据入门基础系列之Linux操作系统简介与选择 大数据入门基础系列之虚拟机的下载.安装详解 大数据入门基础系列之Linux的安装详解 大数据入门基 ...
- pip install 安装出现问题:UnicodeEncodeError: 'ascii' codec can't encode characters in position XX的解决办法
pip install 安装出现问题:UnicodeEncodeError: 'ascii' codec can't encode characters in position XX的解决办法 转自c ...