[CF888E] Maximum Subsequence 序列分治
早期作品,不喜轻喷。
LG传送门
序列分治板子题。
切这道题用了好长时间,所以想发篇题解作为纪念 。
首先,我们认真观察题目数据(面向数据做题是个好习惯),发现题目的\(n\)竟然只有\(35\),我们顿时感到打暴力的机会来了:
\(2^n\)枚举?
是个好办法。
只可惜我们发现\(2^{35}=34359738368\),并不能过掉所有数据点,于是考虑优化。
分治
考虑把这\(n\)个数分成两组(当然要尽量平均),对两组数据分别实施暴力,并把结果存起来(事实上是可以存下来的:\(2^{18}=262144\))。
void dfs1(int i,int sum){
if(i==b){p[++k]=sum,p[++k]=(sum+a[b])%m; return ;}
dfs1(i+1,sum),dfs1(i+1,(sum+a[i])%m);
}
void dfs2(int i,int sum){
if(i==n){q[++t]=sum,q[++t]=(sum+a[n])%m; return ;}
dfs2(i+1,sum),dfs2(i+1,(sum+a[i])%m);
}
这样一来,我们就得到了原序列分成两半的结果,这两个序列中的数两两组合就可以得到我们要的结果。
等等,两两组合?这样的复杂度不是和纯暴力一样吗?
这时候就需要我们贪心地看问题了:
我们发现:对于序列\(p\)中的每一个数\(p_i\),在序列\(q\)中若能找到一个与之相加小于\(m\)的最大的数\(q_j\),其他所有的与\(p_i\)的和小于\(m\)的数都不会比它更优,即\(q_j\)比序列\(q\)中所有比它小的数都更优。
对于\(q\)中的每一个数,满足相同条件的\(p_i\)也具有同样的性质。
我们想到一种对于\(p,q\)线性的算法:把\(p\)和\(q\)排一遍序,把指向\(p\)数组的指针\(i\)和指向\(q\)数组的指针\(j\)分别按上面所说的条件向右和向左移动,同时更新\(ans\)。
这时我们就只剩下\(p_i+q_j>m\)的情况了,由于在之前已经取过模,\(p_i+q_j\)必定小于\(2m\),所以我们就只需要用\(p,q\)的最大值之和去更新一下\(ans\)就好了。
代码实现
int main(){
R int i,j,ans=0;
n=read(),m=read(),b=n>>1;
for(i=1;i<=n;++i) a[i]=read();
if(n==1) printf("%d",a[1]%m),exit(0);
dfs1(1,0),dfs2(b+1,0),i=0,j=t;
sort(p+1,p+k+1),sort(q+1,q+t+1);
while(i<=k){
while(p[i]+q[j]>=m) --j;
ans=max(ans,p[i]+q[j]),++i;
}
ans=max(ans,p[k]+q[t]-m);
printf("%d",ans);
return 0;
}
注意这里特判了一下\(n=1\)的情况,我被这个点坑了一次。
[CF888E] Maximum Subsequence 序列分治的更多相关文章
- CF888E Maximum Subsequence (Meet in the middle,贪心)
题目链接 Solution Meet in the middle. 考虑到 \(2^{35}\) 枚举会超时,于是分成两半枚举(尽量平均). 然后不能 \(n^2\) 去匹配,需要用到一点贪心: 将数 ...
- CF888E Maximum Subsequence(meet in the middle)
给一个数列和m,在数列任选若干个数,使得他们的和对m取模后最大( \(1<=n<=35\) , \(1<=m<=10^{9}\)) 考虑把数列分成两份,两边分别暴力求出所有的可 ...
- $CF888E\ Maximum\ Subsequence$ 搜索
正解:$meet\ in\ the\ middle$ 解题报告: 传送门$QwQ$. 发现数据范围为$n\leq 35$,所以$2^{\frac{n}{2}}$是可做的. 所以先拆成$A,B$两个集合 ...
- 【CF888E】Maximum Subsequence 折半搜索
[CF888E]Maximum Subsequence 题意:给你一个序列{ai},让你从中选出一个子序列,使得序列和%m最大. n<=35,m<=10^9 题解:不小心瞟了一眼tag就一 ...
- 【CF888E】Maximum Subsequence(meet in the middle)
[CF888E]Maximum Subsequence(meet in the middle) 题面 CF 洛谷 题解 把所有数分一下,然后\(meet\ in\ the\ middle\)做就好了. ...
- 1007. Maximum Subsequence Sum (25)
Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...
- PAT - 测试 01-复杂度2 Maximum Subsequence Sum (25分)
1, N2N_2N2, ..., NKN_KNK }. A continuous subsequence is defined to be { NiN_iNi, Ni+1N_{i ...
- PAT 解题报告 1007. Maximum Subsequence Sum (25)
Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...
- 中国大学MOOC-陈越、何钦铭-数据结构-2015秋 01-复杂度2 Maximum Subsequence Sum (25分)
01-复杂度2 Maximum Subsequence Sum (25分) Given a sequence of K integers { N1,N2, ..., NK }. ...
随机推荐
- BZOJ1334:[Baltic2008]Elect(背包DP)
Description N个政党要组成一个联合内阁,每个党都有自己的席位数. 现在希望你找出一种方案,你选中的党的席位数要大于总数的一半,并且联合内阁的席位数越多越好. 对于一个联合内阁,如果某个政党 ...
- 1. Docker基础命令
本文简要介绍Docker的基础命令,目的在于快速入门Dokcer,Docker的完整命令可以参考Docker官方手册. 0. 安装Docker Docker当前分为企业版(Docker Enterpr ...
- Odoo中报表PDF样式出错的解决办法
如果发现生成的pdf样式不对,那可能是wkhtmltopdf没办法访问web服务器导致的.wkhtmltopdf进程使用web.base.url作为根url来生成对应文件路径,但这个地址是每次管理员登 ...
- centos上nginx的安装
安装步骤: 1.下载nginx,执行:wget http://nginx.org/download/nginx-1.10.2.tar.gz 2.解压,执行:tar vxzf nginx-1.10. ...
- SpringBoot实战(五)之Thymeleaf
Thymeleaf同jsp.volocity.freemarker等共同的职能是MVC模式中的视图展示层,即View. 当然了,SpringBoot中也可以用jsp,不过不推荐这种用法,比较推崇的就是 ...
- [转]浅谈利用SQLite存储离散瓦片的思路和实现方法
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 在多个项目中涉及到互联网地图的内网显示,通过自制工具完成了互联 ...
- 关于python接口基础到进阶随笔
想了很久,闲来无事,今天想了下还是总结了下写下来,部分参考官方源码理解,还有就是这么久的理解, 如果觉得有帮助请记得点赞 先讲下接口url组成拿后台服务为例 通常一个后台请求url格式: http:/ ...
- POJ 2299 Ultra-QuickSort 求逆序数 (归并或者数状数组)此题为树状数组入门题!!!
Ultra-QuickSort Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 70674 Accepted: 26538 ...
- Spring异步-@Async注解
Spring异步:@Async注解 使用@Async前需要开启异步支持:@EnableAsync 注解和XML方式 @Async返回值的调用:需要使用Future包装 1.如果没有使用Future包装 ...
- 数据库事务ACID特性及隔离级别
数据库ACID特性介绍 1.原子性(Atomic)一个事务被视为一个不可分割的最小工作单元,这个事务里的所有操作要么全部成功执行,要么全都不执行,不能只执行其中的一部分操作.实现事务的原子性,要支持回 ...