什么是RDD

RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。 
RDD的属性

一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。 
基本RDD操作 
创建RDD: 
1)读取外部数据集 
val file=sc.textFile(“hdfs://hadoop1:9000/input/word/word.txt”)

2)在驱动器程序中对一个集合进行并行化
val lines = sc.parallelize(List("pandas","i like pandas"))

RDD操作: 
RDD转化操作是返回一个新的RDD的操作,比如map()和filter() 
RDD行动操作则是向驱动器程序返回结果或把结果写入外部系统的操作,会触发实际的计算 
1)转化操作 
val inputRDD = sc.textFile(“hdfs://hadoop1:9000/input/word/word.txt”)

    val keyRDD = inputRDD.filter(line => line.contains("guofei"))

2)行动操作0
val keyRDD = inputRDD.filter(line => line.contains("guofei")) wantRDD.take(10).foreach(println)

常见的转化操作和行动操作 
1.转化操作 
map()与flatMap()区别 
flatMap 将函数应用于RDD中的每个元素,将返回的迭代器的所有的内容构成新的RDD,通常用来切分单词 
val lines = sc.parallelize(List(“come on”,”guofei”)) 
var words = lines.flatMap(line => line.split(” “)) 
words.collect()

map 将函数应用于RDD中的每个元素,将返回值构成新的RDD
var words1 = lines.map(line => line.split(" "))
words1.collect() filter 返回一个由通过传给filter()的函数的元素组成的RDD
val list = sc.parallelize(List(1,2,3,3))
val listFilter = list.filter(x => x != 1)
listFilter.collect() distinct 去重
val listDistinct = list.distinct()
listDistinct.collect() union() 生成一个包含俩哥哥RDD中所有元素的RDD
val list = sc.parallelize(List(3,4,5))
val list1 = sc.parallelize(List(1,2,3))
val union = list.union(list1)
union.collect() intersection() 求两个RDD共同的元素的RDD
list.intersection(list1).collect() subtract() 移除里一个RDD中的内容
list.subtract(list1).collect() cartesian() 与另一个RDD的笛卡儿积
list.cartesian(list1).collect()

2.行动操作 
reduce() 
val list = sc.parallelize(List(3,4,5)) 
list.reduce((x,y) => x + y)

collect() 返回RDD中的所有元素
count() RDD中的元素个数
countByValue() 各元素在RDD中出现的次数
take(num) 从RDD中返回num个数
top(num) RDD中返回最前面的num个元素
takeOrdered(num)(ordering) 从RDD中按照提供的舒徐返回最前见的num元素
reduce(func) 并行整合RDD中左右数据
fold(zero)(func) 和reduce一样,但是需要提供初始值
aggregate(zeroValue)(seqOp,combOp) 和reduce相似,但是通常返回不同类型的函数

键值对操作: 
创建Pair RDD

使用第一个单词作为键创建出一个pair RDD 
val file=sc.textFile(“hdfs://hadoop1:9000/input/word/word.txt”) 
file.map(x => (x.split(” “)(0),x)).collect()

Pair RDD的转化操作 
创建Pair 
val list1 = sc.parallelize(List((1,2),(3,4),(3,6))) 
list1.collect()

reduceByKey(func) 合并具有相同键的值 
list1.reduceByKey((x,y) => x+y).collect()

groupByKey() 对具有相同键的值进行分组 
list1.groupByKey.collect()

mapValues(func) 对pair RDD中的每个值应用一个函数而不改变键 
list1.mapValues(x => x+1).collect()

flatMapValues(func) 对pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键对记录。通常用于符号化 
list1.flatMapValues(x => (x to 5)).collect()

keys() 返回一个仅包含键的RDD 
list1.keys.collect()

values() 返回一个仅包含值得RDD 
list1.values.collect()

sortByKey() 返回一个根据键排序的RDD 
list1.sortByKey().collect()

针对两个pair RDD的转化操作 
val rdd = sc.parallelize(List((1,2),(3,4),(3,6))) 
val other = sc.parallelize(List((1,2)))

subtractByKey 删掉RDD中键与other中的键相同的元素 
rdd.subtractByKey(other).collect()

join 对两个RDD进行内连接 
rdd.join(other).collect()

leftOuterJoin() 对两个RDD进行连接操作,确保第二个RDD的键必须存在(左外连接) 
rdd.leftOuterJoin(other).collect()

cogroup() 将两个RDD中拥有相同键的数据分组到一起 
rdd.cogroup(other).collect()

Spark 基础及RDD基本操作的更多相关文章

  1. Spark笔记:RDD基本操作(上)

    本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当 ...

  2. Spark笔记:RDD基本操作(下)

    上一篇里我提到可以把RDD当作一个数组,这样我们在学习spark的API时候很多问题就能很好理解了.上篇文章里的API也都是基于RDD是数组的数据模型而进行操作的. Spark是一个计算框架,是对ma ...

  3. Spark基础和RDD

    spark 1. Spark的四大特性 速度快 spark比mapreduce快的两个原因 基于内存 1. mapreduce任务后期在计算的是时候,每一个job的输出结果都会落地到磁盘,后续有其他的 ...

  4. Spark RDD/Core 编程 API入门系列 之rdd实战(rdd基本操作实战及transformation和action流程图)(源码)(三)

    本博文的主要内容是: 1.rdd基本操作实战 2.transformation和action流程图 3.典型的transformation和action RDD有3种操作: 1.  Trandform ...

  5. Spark基础:(二)Spark RDD编程

    1.RDD基础 Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在分区的不同节点上. 用户可以通过两种方式创建RDD: (1)读取外部数据集====> ...

  6. Spark基础入门(01)—RDD

    1,基本概念 RDD(Resilient Distributed Dataset) :弹性分布式数据集 它是Spark中最基本的数据抽象,是编写Spark程序的基础.简单的来讲,一个Spark程序可以 ...

  7. 【Spark基础】:RDD

    我的代码实践:https://github.com/wwcom614/Spark 1.RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式 ...

  8. spark基础知识

    1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架. dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopM ...

  9. 最全的spark基础知识解答

    原文:http://www.36dsj.com/archives/61155 一. Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduc ...

随机推荐

  1. 转multicast vs broadcast

    转自:http://blog.csdn.net/bloghome/article/details/4682984 一.multicast概述:   多媒体应用集成了声音.图形.动画.文本以及视频,这种 ...

  2. 基于NOPI的Execl模板转换类,直接将Execl模板转换对应的Entity

    1.创建实体属性标记 public class CellAttribute : Attribute { /// <summary> /// /// </summary> /// ...

  3. Android 数据加密算法 Des,Base64详解

    一,DES加密: 首先网上搜索了一个DES加密算法工具类: import java.security.*;import javax.crypto.*; public class DesHelper { ...

  4. django post和get 比较

    当我们提交表单仅仅需要获取数据时就可以用GET: 而当我们提交表单时需要更改服务器数据的状态,或者说发送e-mail,或者其他不仅仅是获取并显示数据的时候就使用POST. 在这个搜索书籍的例子里,我们 ...

  5. 解决maven构建webapp index.jsp报错问题

    今天早上想用maven 构建一个webapp 然后index.jsp华华丽丽的报错了  当时我的心情是一万头草泥马奔过啊,为啥你给我创建的webapp 还会报错啊!!!!!! 然后百度了一下,各种说少 ...

  6. Jquery—Jquery异步功能实例

    Jquery确实是一个非常好的JavaScript框架,今天利用闲暇时间给大家一个借助Jquery异步实现校验username的唯一性的样例: 代码1--index.jsp文件: <%@ pag ...

  7. MarkDown的vim插件安装

    作用:可以使markdown语法高亮.1.安装.使用pathogen插件管理.    cd ~/.vim/bundle    git clone https://github.com/plasticb ...

  8. ssh:Permissions 0644 for ‘/root/.ssh/id_rsa’ are too open

    最近,用ssh连接github时,突然提示“Permissions 0644 for ‘/root/.ssh/id_rsa’ are too open”,并且断开连接. 仔细阅读了一下ssh文档和这句 ...

  9. 有限狀態機FSM coding style整理 (SOC) (Verilog)

    AbstractFSM在數位電路中非常重要,藉由FSM,可以讓數位電路也能循序地執行起演算法.本文將詳細討論各種FSM coding style的優缺點,並歸納出推薦的coding style. In ...

  10. [Golong]学习笔记(一) 基础知识

    Go编程基础 Go的内置keyword(25个) 不多 break default func interface select case defer go map struct chan else g ...