高性能相关

在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢。

 import requests

 def fetch_async(url):
response = requests.get(url)
return response url_list = ['http://www.github.com', 'http://www.bing.com'] for url in url_list:
fetch_async(url)

1.同步执行

 from concurrent.futures import ThreadPoolExecutor
import requests def fetch_async(url):
response = requests.get(url)
return response url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ThreadPoolExecutor(5)
for url in url_list:
pool.submit(fetch_async, url)
pool.shutdown(wait=True)

2.多线程执行

 from concurrent.futures import ThreadPoolExecutor
import requests def fetch_async(url):
response = requests.get(url)
return response def callback(future):
print(future.result()) url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ThreadPoolExecutor(5)
for url in url_list:
v = pool.submit(fetch_async, url)
v.add_done_callback(callback)
pool.shutdown(wait=True)

2.多线程+回调函数执行

 from concurrent.futures import ProcessPoolExecutor
import requests def fetch_async(url):
response = requests.get(url)
return response url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ProcessPoolExecutor(5)
for url in url_list:
pool.submit(fetch_async, url)
pool.shutdown(wait=True)

3.多进程执行

 from concurrent.futures import ProcessPoolExecutor
import requests def fetch_async(url):
response = requests.get(url)
return response def callback(future):
print(future.result()) url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ProcessPoolExecutor(5)
for url in url_list:
v = pool.submit(fetch_async, url)
v.add_done_callback(callback)
pool.shutdown(wait=True)

3.多进程+回调函数执行

通过上述代码均可以完成对请求性能的提高,对于多线程和多进行的缺点是在IO阻塞时会造成了线程和进程的浪费,所以异步IO回事首选:

 import asyncio

 @asyncio.coroutine
def func1():
print('before...func1......')
yield from asyncio.sleep(5)
print('end...func1......') tasks = [func1(), func1()] loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

1.asyncio示例1

 import asyncio

 @asyncio.coroutine
def fetch_async(host, url='/'):
print(host, url)
reader, writer = yield from asyncio.open_connection(host, 80) request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,)
request_header_content = bytes(request_header_content, encoding='utf-8') writer.write(request_header_content)
yield from writer.drain()
text = yield from reader.read()
print(host, url, text)
writer.close() tasks = [
fetch_async('www.cnblogs.com', '/wupeiqi/'),
fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
] loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

1.asyncio示例2

 import aiohttp
import asyncio @asyncio.coroutine
def fetch_async(url):
print(url)
response = yield from aiohttp.request('GET', url)
# data = yield from response.read()
# print(url, data)
print(url, response)
response.close() tasks = [fetch_async('http://www.google.com/'), fetch_async('http://www.chouti.com/')] event_loop = asyncio.get_event_loop()
results = event_loop.run_until_complete(asyncio.gather(*tasks))
event_loop.close()

2.asyncio + aiohttp

 import asyncio
import requests @asyncio.coroutine
def fetch_async(func, *args):
loop = asyncio.get_event_loop()
future = loop.run_in_executor(None, func, *args)
response = yield from future
print(response.url, response.content) tasks = [
fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'),
fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
] loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

3.asyncio + requests

 import gevent

 import requests
from gevent import monkey monkey.patch_all() def fetch_async(method, url, req_kwargs):
print(method, url, req_kwargs)
response = requests.request(method=method, url=url, **req_kwargs)
print(response.url, response.content) # ##### 发送请求 #####
gevent.joinall([
gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}),
]) # ##### 发送请求(协程池控制最大协程数量) #####
# from gevent.pool import Pool
# pool = Pool(None)
# gevent.joinall([
# pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
# pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
# pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}),
# ])

4.gevent + requests

 import grequests

 request_list = [
grequests.get('http://httpbin.org/delay/1', timeout=0.001),
grequests.get('http://fakedomain/'),
grequests.get('http://httpbin.org/status/500')
] # ##### 执行并获取响应列表 #####
# response_list = grequests.map(request_list)
# print(response_list) # ##### 执行并获取响应列表(处理异常) #####
# def exception_handler(request, exception):
# print(request,exception)
# print("Request failed") # response_list = grequests.map(request_list, exception_handler=exception_handler)
# print(response_list)

5.grequests

 from twisted.web.client import getPage, defer
from twisted.internet import reactor def all_done(arg):
reactor.stop() def callback(contents):
print(contents) deferred_list = [] url_list = ['http://www.bing.com', 'http://www.baidu.com', ]
for url in url_list:
deferred = getPage(bytes(url, encoding='utf8'))
deferred.addCallback(callback)
deferred_list.append(deferred) dlist = defer.DeferredList(deferred_list)
dlist.addBoth(all_done) reactor.run()

6.Twisted示例

 from tornado.httpclient import AsyncHTTPClient
from tornado.httpclient import HTTPRequest
from tornado import ioloop def handle_response(response):
"""
处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop()
:param response:
:return:
"""
if response.error:
print("Error:", response.error)
else:
print(response.body) def func():
url_list = [
'http://www.baidu.com',
'http://www.bing.com',
]
for url in url_list:
print(url)
http_client = AsyncHTTPClient()
http_client.fetch(HTTPRequest(url), handle_response) ioloop.IOLoop.current().add_callback(func)
ioloop.IOLoop.current().start()

7.Tornado

 from twisted.internet import reactor
from twisted.web.client import getPage
import urllib.parse def one_done(arg):
print(arg)
reactor.stop() post_data = urllib.parse.urlencode({'check_data': 'adf'})
post_data = bytes(post_data, encoding='utf8')
headers = {b'Content-Type': b'application/x-www-form-urlencoded'}
response = getPage(bytes('http://dig.chouti.com/login', encoding='utf8'),
method=bytes('POST', encoding='utf8'),
postdata=post_data,
cookies={},
headers=headers)
response.addBoth(one_done) reactor.run()

Twisted更多

以上均是Python内置以及第三方模块提供异步IO请求模块,使用简便大大提高效率,而对于异步IO请求的本质则是【非阻塞Socket】+【IO多路复用】:

 import select
import socket
import time class AsyncTimeoutException(TimeoutError):
"""
请求超时异常类
""" def __init__(self, msg):
self.msg = msg
super(AsyncTimeoutException, self).__init__(msg) class HttpContext(object):
"""封装请求和相应的基本数据""" def __init__(self, sock, host, port, method, url, data, callback, timeout=5):
"""
sock: 请求的客户端socket对象
host: 请求的主机名
port: 请求的端口
port: 请求的端口
method: 请求方式
url: 请求的URL
data: 请求时请求体中的数据
callback: 请求完成后的回调函数
timeout: 请求的超时时间
"""
self.sock = sock
self.callback = callback
self.host = host
self.port = port
self.method = method
self.url = url
self.data = data self.timeout = timeout self.__start_time = time.time()
self.__buffer = [] def is_timeout(self):
"""当前请求是否已经超时"""
current_time = time.time()
if (self.__start_time + self.timeout) < current_time:
return True def fileno(self):
"""请求sockect对象的文件描述符,用于select监听"""
return self.sock.fileno() def write(self, data):
"""在buffer中写入响应内容"""
self.__buffer.append(data) def finish(self, exc=None):
"""在buffer中写入响应内容完成,执行请求的回调函数"""
if not exc:
response = b''.join(self.__buffer)
self.callback(self, response, exc)
else:
self.callback(self, None, exc) def send_request_data(self):
content = """%s %s HTTP/1.0\r\nHost: %s\r\n\r\n%s""" % (
self.method.upper(), self.url, self.host, self.data,) return content.encode(encoding='utf8') class AsyncRequest(object):
def __init__(self):
self.fds = []
self.connections = [] def add_request(self, host, port, method, url, data, callback, timeout):
"""创建一个要请求"""
client = socket.socket()
client.setblocking(False)
try:
client.connect((host, port))
except BlockingIOError as e:
pass
# print('已经向远程发送连接的请求')
req = HttpContext(client, host, port, method, url, data, callback, timeout)
self.connections.append(req)
self.fds.append(req) def check_conn_timeout(self):
"""检查所有的请求,是否有已经连接超时,如果有则终止"""
timeout_list = []
for context in self.connections:
if context.is_timeout():
timeout_list.append(context)
for context in timeout_list:
context.finish(AsyncTimeoutException('请求超时'))
self.fds.remove(context)
self.connections.remove(context) def running(self):
"""事件循环,用于检测请求的socket是否已经就绪,从而执行相关操作"""
while True:
r, w, e = select.select(self.fds, self.connections, self.fds, 0.05) if not self.fds:
return for context in r:
sock = context.sock
while True:
try:
data = sock.recv(8096)
if not data:
self.fds.remove(context)
context.finish()
break
else:
context.write(data)
except BlockingIOError as e:
break
except TimeoutError as e:
self.fds.remove(context)
self.connections.remove(context)
context.finish(e)
break for context in w:
# 已经连接成功远程服务器,开始向远程发送请求数据
if context in self.fds:
data = context.send_request_data()
context.sock.sendall(data)
self.connections.remove(context) self.check_conn_timeout() if __name__ == '__main__':
def callback_func(context, response, ex):
"""
:param context: HttpContext对象,内部封装了请求相关信息
:param response: 请求响应内容
:param ex: 是否出现异常(如果有异常则值为异常对象;否则值为None)
:return:
"""
print(context, response, ex) obj = AsyncRequest()
url_list = [
{'host': 'www.google.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
'callback': callback_func},
{'host': 'www.baidu.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
'callback': callback_func},
{'host': 'www.bing.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
'callback': callback_func},
]
for item in url_list:
print(item)
obj.add_request(**item) obj.running()

史上最牛逼的异步IO模块

Scrapy

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下:

Scrapy主要包括了以下组件:

  • 引擎(Scrapy)
    用来处理整个系统的数据流处理, 触发事务(框架核心)
  • 调度器(Scheduler)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
  • 下载器(Downloader)
    用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
  • 爬虫(Spiders)
    爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
  • 项目管道(Pipeline)
    负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
  • 下载器中间件(Downloader Middlewares)
    位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
  • 爬虫中间件(Spider Middlewares)
    介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
  • 调度中间件(Scheduler Middewares)
    介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:

  1. 引擎从调度器中取出一个链接(URL)用于接下来的抓取
  2. 引擎把URL封装成一个请求(Request)传给下载器
  3. 下载器把资源下载下来,并封装成应答包(Response)
  4. 爬虫解析Response
  5. 解析出实体(Item),则交给实体管道进行进一步的处理
  6. 解析出的是链接(URL),则把URL交给调度器等待抓取

一、安装

 Linux
pip3 install scrapy Windows
a. pip3 install wheel
b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl
d. pip3 install scrapy
e. 下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/

二、基本使用

1. 基本命令

 1. scrapy startproject 项目名称
- 在当前目录中创建中创建一个项目文件(类似于Django) 2. scrapy genspider [-t template] <name> <domain>
- 创建爬虫应用
如:
scrapy gensipider -t basic oldboy oldboy.com
scrapy gensipider -t xmlfeed autohome autohome.com.cn
PS:
查看所有命令:scrapy gensipider -l
查看模板命令:scrapy gensipider -d 模板名称 3. scrapy list
- 展示爬虫应用列表 4. scrapy crawl 爬虫应用名称
- 运行单独爬虫应用

2.项目结构以及爬虫应用简介

 project_name/
scrapy.cfg
project_name/
__init__.py
items.py
pipelines.py
settings.py
spiders/
__init__.py
爬虫1.py
爬虫2.py
爬虫3.py

文件说明:

  • scrapy.cfg  项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:一般创建爬虫文件时,以网站域名命名

 import scrapy

 class XiaoHuarSpider(scrapy.spiders.Spider):
name = "xiaohuar" # 爬虫名称 *****
allowed_domains = ["xiaohuar.com"] # 允许的域名
start_urls = [
"http://www.xiaohuar.com/hua/", # 其实URL
] def parse(self, response):
# 访问起始URL并获取结果后的回调函数

爬虫1.py

3. 小试牛刀

 import scrapy
from scrapy.selector import HtmlXPathSelector
from scrapy.http.request import Request class DigSpider(scrapy.Spider):
# 爬虫应用的名称,通过此名称启动爬虫命令
name = "dig" # 允许的域名
allowed_domains = ["chouti.com"] # 起始URL
start_urls = [
'http://dig.chouti.com/',
] has_request_set = {} def parse(self, response):
print(response.url) hxs = HtmlXPathSelector(response)
page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\d+")]/@href').extract()
for page in page_list:
page_url = 'http://dig.chouti.com%s' % page
key = self.md5(page_url)
if key in self.has_request_set:
pass
else:
self.has_request_set[key] = page_url
obj = Request(url=page_url, method='GET', callback=self.parse)
yield obj @staticmethod
def md5(val):
import hashlib
ha = hashlib.md5()
ha.update(bytes(val, encoding='utf-8'))
key = ha.hexdigest()
return key

执行此爬虫文件,则在终端进入项目目录执行如下命令:

 scrapy crawl dig --nolog

对于上述代码重要之处在于:

  • Request是一个封装用户请求的类,在回调函数中yield该对象表示继续访问
  • HtmlXpathSelector用于结构化HTML代码并提供选择器功能

4. 选择器

 #!/usr/bin/env python
# -*- coding:utf-8 -*-
from scrapy.selector import Selector, HtmlXPathSelector
from scrapy.http import HtmlResponse
html = """<!DOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title></title>
</head>
<body>
<ul>
<li class="item-"><a id='i1' href="link.html">first item</a></li>
<li class="item-0"><a id='i2' href="llink.html">first item</a></li>
<li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li>
</ul>
<div><a href="llink2.html">second item</a></div>
</body>
</html>
"""
response = HtmlResponse(url='http://example.com', body=html,encoding='utf-8')
# hxs = HtmlXPathSelector(response)
# print(hxs)
# hxs = Selector(response=response).xpath('//a')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[2]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@id]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@id="i1"]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@href="link.html"][@id="i1"]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[contains(@href, "link")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[starts-with(@href, "link")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/text()').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/@href').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('/html/body/ul/li/a/@href').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('//body/ul/li/a/@href').extract_first()
# print(hxs) # ul_list = Selector(response=response).xpath('//body/ul/li')
# for item in ul_list:
# v = item.xpath('./a/span')
# # 或
# # v = item.xpath('a/span')
# # 或
# # v = item.xpath('*/a/span')
# print(v)
 # -*- coding: utf-8 -*-
import scrapy
from scrapy.selector import HtmlXPathSelector
from scrapy.http.request import Request
from scrapy.http.cookies import CookieJar
from scrapy import FormRequest class ChouTiSpider(scrapy.Spider):
# 爬虫应用的名称,通过此名称启动爬虫命令
name = "chouti"
# 允许的域名
allowed_domains = ["chouti.com"] cookie_dict = {}
has_request_set = {} def start_requests(self):
url = 'http://dig.chouti.com/'
# return [Request(url=url, callback=self.login)]
yield Request(url=url, callback=self.login) def login(self, response):
cookie_jar = CookieJar()
cookie_jar.extract_cookies(response, response.request)
for k, v in cookie_jar._cookies.items():
for i, j in v.items():
for m, n in j.items():
self.cookie_dict[m] = n.value req = Request(
url='http://dig.chouti.com/login',
method='POST',
headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},
body='phone=8615131255089&password=pppppppp&oneMonth=1',
cookies=self.cookie_dict,
callback=self.check_login
)
yield req def check_login(self, response):
req = Request(
url='http://dig.chouti.com/',
method='GET',
callback=self.show,
cookies=self.cookie_dict,
dont_filter=True
)
yield req def show(self, response):
# print(response)
hxs = HtmlXPathSelector(response)
news_list = hxs.select('//div[@id="content-list"]/div[@class="item"]')
for new in news_list:
# temp = new.xpath('div/div[@class="part2"]/@share-linkid').extract()
link_id = new.xpath('*/div[@class="part2"]/@share-linkid').extract_first()
yield Request(
url='http://dig.chouti.com/link/vote?linksId=%s' %(link_id,),
method='POST',
cookies=self.cookie_dict,
callback=self.do_favor
) page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\d+")]/@href').extract()
for page in page_list: page_url = 'http://dig.chouti.com%s' % page
import hashlib
hash = hashlib.md5()
hash.update(bytes(page_url,encoding='utf-8'))
key = hash.hexdigest()
if key in self.has_request_set:
pass
else:
self.has_request_set[key] = page_url
yield Request(
url=page_url,
method='GET',
callback=self.show
) def do_favor(self, response):
print(response.text)

示例:自动登陆抽屉并点赞

注意:settings.py中设置DEPTH_LIMIT = 1来指定“递归”的层数。

5. 格式化处理

上述实例只是简单的处理,所以在parse方法中直接处理。如果对于想要获取更多的数据处理,则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。

 import scrapy
from scrapy.selector import HtmlXPathSelector
from scrapy.http.request import Request
from scrapy.http.cookies import CookieJar
from scrapy import FormRequest class XiaoHuarSpider(scrapy.Spider):
# 爬虫应用的名称,通过此名称启动爬虫命令
name = "xiaohuar"
# 允许的域名
allowed_domains = ["xiaohuar.com"] start_urls = [
"http://www.xiaohuar.com/list-1-1.html",
]
# custom_settings = {
# 'ITEM_PIPELINES':{
# 'spider1.pipelines.JsonPipeline': 100
# }
# }
has_request_set = {} def parse(self, response):
# 分析页面
# 找到页面中符合规则的内容(校花图片),保存
# 找到所有的a标签,再访问其他a标签,一层一层的搞下去 hxs = HtmlXPathSelector(response) items = hxs.select('//div[@class="item_list infinite_scroll"]/div')
for item in items:
src = item.select('.//div[@class="img"]/a/img/@src').extract_first()
name = item.select('.//div[@class="img"]/span/text()').extract_first()
school = item.select('.//div[@class="img"]/div[@class="btns"]/a/text()').extract_first()
url = "http://www.xiaohuar.com%s" % src
from ..items import XiaoHuarItem
obj = XiaoHuarItem(name=name, school=school, url=url)
yield obj urls = hxs.select('//a[re:test(@href, "http://www.xiaohuar.com/list-1-\d+.html")]/@href')
for url in urls:
key = self.md5(url)
if key in self.has_request_set:
pass
else:
self.has_request_set[key] = url
req = Request(url=url,method='GET',callback=self.parse)
yield req @staticmethod
def md5(val):
import hashlib
ha = hashlib.md5()
ha.update(bytes(val, encoding='utf-8'))
key = ha.hexdigest()
return key

spiders/xiahuar.py

 import scrapy

 class XiaoHuarItem(scrapy.Item):
name = scrapy.Field()
school = scrapy.Field()
url = scrapy.Field()

items

 import json
import os
import requests class JsonPipeline(object):
def __init__(self):
self.file = open('xiaohua.txt', 'w') def process_item(self, item, spider):
v = json.dumps(dict(item), ensure_ascii=False)
self.file.write(v)
self.file.write('\n')
self.file.flush()
return item class FilePipeline(object):
def __init__(self):
if not os.path.exists('imgs'):
os.makedirs('imgs') def process_item(self, item, spider):
response = requests.get(item['url'], stream=True)
file_name = '%s_%s.jpg' % (item['name'], item['school'])
with open(os.path.join('imgs', file_name), mode='wb') as f:
f.write(response.content)
return item

pipelines

 ITEM_PIPELINES = {
'spider1.pipelines.JsonPipeline': 100,
'spider1.pipelines.FilePipeline': 300,
}
# 每行后面的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。

settings

对于pipeline可以做更多,如下:

 from scrapy.exceptions import DropItem

 class CustomPipeline(object):
def __init__(self,v):
self.value = v def process_item(self, item, spider):
# 操作并进行持久化 # return表示会被后续的pipeline继续处理
return item # 表示将item丢弃,不会被后续pipeline处理
# raise DropItem() @classmethod
def from_crawler(cls, crawler):
"""
初始化时候,用于创建pipeline对象
:param crawler:
:return:
"""
val = crawler.settings.getint('MMMM')
return cls(val) def open_spider(self,spider):
"""
爬虫开始执行时,调用
:param spider:
:return:
"""
print('') def close_spider(self,spider):
"""
爬虫关闭时,被调用
:param spider:
:return:
"""
print('')

自定义pipeline

6.中间件

 class SpiderMiddleware(object):

     def process_spider_input(self,response, spider):
"""
下载完成,执行,然后交给parse处理
:param response:
:param spider:
:return:
"""
pass def process_spider_output(self,response, result, spider):
"""
spider处理完成,返回时调用
:param response:
:param result:
:param spider:
:return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)
"""
return result def process_spider_exception(self,response, exception, spider):
"""
异常调用
:param response:
:param exception:
:param spider:
:return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline
"""
return None def process_start_requests(self,start_requests, spider):
"""
爬虫启动时调用
:param start_requests:
:param spider:
:return: 包含 Request 对象的可迭代对象
"""
return start_requests

爬虫中间件

 class DownMiddleware1(object):
def process_request(self, request, spider):
"""
请求需要被下载时,经过所有下载器中间件的process_request调用
:param request:
:param spider:
:return:
None,继续后续中间件去下载;
Response对象,停止process_request的执行,开始执行process_response
Request对象,停止中间件的执行,将Request重新调度器
raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
"""
pass def process_response(self, request, response, spider):
"""
spider处理完成,返回时调用
:param response:
:param result:
:param spider:
:return:
Response 对象:转交给其他中间件process_response
Request 对象:停止中间件,request会被重新调度下载
raise IgnoreRequest 异常:调用Request.errback
"""
print('response1')
return response def process_exception(self, request, exception, spider):
"""
当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
:param response:
:param exception:
:param spider:
:return:
None:继续交给后续中间件处理异常;
Response对象:停止后续process_exception方法
Request对象:停止中间件,request将会被重新调用下载
"""
return None

下载器中间件

7. 自定制命令

  • 在spiders同级创建任意目录,如:commands
  • 在其中创建 crawlall.py 文件 (此处文件名就是自定义的命令)
 from scrapy.commands import ScrapyCommand
from scrapy.utils.project import get_project_settings class Command(ScrapyCommand): requires_project = True def syntax(self):
return '[options]' def short_desc(self):
return 'Runs all of the spiders' def run(self, args, opts):
spider_list = self.crawler_process.spiders.list()
for name in spider_list:
self.crawler_process.crawl(name, **opts.__dict__)
self.crawler_process.start()

crawlall.py

  • 在settings.py 中添加配置 COMMANDS_MODULE = '项目名称.目录名称'
  • 在项目目录执行命令:scrapy crawlall

8. 自定义扩展

自定义扩展时,利用信号在指定位置注册制定操作

 from scrapy import signals

 class MyExtension(object):
def __init__(self, value):
self.value = value @classmethod
def from_crawler(cls, crawler):
val = crawler.settings.getint('MMMM')
ext = cls(val) crawler.signals.connect(ext.spider_opened, signal=signals.spider_opened)
crawler.signals.connect(ext.spider_closed, signal=signals.spider_closed) return ext def spider_opened(self, spider):
print('open') def spider_closed(self, spider):
print('close')

9. 避免重复访问

scrapy默认使用 scrapy.dupefilter.RFPDupeFilter 进行去重,相关配置有:

 DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter'
DUPEFILTER_DEBUG = False
JOBDIR = "保存范文记录的日志路径,如:/root/" # 最终路径为 /root/requests.seen
 class RepeatUrl:
def __init__(self):
self.visited_url = set() @classmethod
def from_settings(cls, settings):
"""
初始化时,调用
:param settings:
:return:
"""
return cls() def request_seen(self, request):
"""
检测当前请求是否已经被访问过
:param request:
:return: True表示已经访问过;False表示未访问过
"""
if request.url in self.visited_url:
return True
self.visited_url.add(request.url)
return False def open(self):
"""
开始爬去请求时,调用
:return:
"""
print('open replication') def close(self, reason):
"""
结束爬虫爬取时,调用
:param reason:
:return:
"""
print('close replication') def log(self, request, spider):
"""
记录日志
:param request:
:param spider:
:return:
"""
print('repeat', request.url)

自定义URL去重操作

10.其他

 # -*- coding: utf-8 -*-

 # Scrapy settings for step8_king project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
# http://doc.scrapy.org/en/latest/topics/settings.html
# http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html # 1. 爬虫名称
BOT_NAME = 'step8_king' # 2. 爬虫应用路径
SPIDER_MODULES = ['step8_king.spiders']
NEWSPIDER_MODULE = 'step8_king.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent
# 3. 客户端 user-agent请求头
# USER_AGENT = 'step8_king (+http://www.yourdomain.com)' # Obey robots.txt rules
# 4. 禁止爬虫配置
# ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16)
# 5. 并发请求数
# CONCURRENT_REQUESTS = 4 # Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# 6. 延迟下载秒数
# DOWNLOAD_DELAY = 2 # The download delay setting will honor only one of:
# 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名
# CONCURRENT_REQUESTS_PER_DOMAIN = 2
# 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP
# CONCURRENT_REQUESTS_PER_IP = 3 # Disable cookies (enabled by default)
# 8. 是否支持cookie,cookiejar进行操作cookie
# COOKIES_ENABLED = True
# COOKIES_DEBUG = True # Disable Telnet Console (enabled by default)
# 9. Telnet用于查看当前爬虫的信息,操作爬虫等...
# 使用telnet ip port ,然后通过命令操作
# TELNETCONSOLE_ENABLED = True
# TELNETCONSOLE_HOST = '127.0.0.1'
# TELNETCONSOLE_PORT = [6023,] # 10. 默认请求头
# Override the default request headers:
# DEFAULT_REQUEST_HEADERS = {
# 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
# 'Accept-Language': 'en',
# } # Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
# 11. 定义pipeline处理请求
# ITEM_PIPELINES = {
# 'step8_king.pipelines.JsonPipeline': 700,
# 'step8_king.pipelines.FilePipeline': 500,
# } # 12. 自定义扩展,基于信号进行调用
# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
# EXTENSIONS = {
# # 'step8_king.extensions.MyExtension': 500,
# } # 13. 爬虫允许的最大深度,可以通过meta查看当前深度;0表示无深度
# DEPTH_LIMIT = 3 # 14. 爬取时,0表示深度优先Lifo(默认);1表示广度优先FiFo # 后进先出,深度优先
# DEPTH_PRIORITY = 0
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleLifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.LifoMemoryQueue'
# 先进先出,广度优先 # DEPTH_PRIORITY = 1
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue' # 15. 调度器队列
# SCHEDULER = 'scrapy.core.scheduler.Scheduler'
# from scrapy.core.scheduler import Scheduler # 16. 访问URL去重
# DUPEFILTER_CLASS = 'step8_king.duplication.RepeatUrl' # Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html """
17. 自动限速算法
from scrapy.contrib.throttle import AutoThrottle
自动限速设置
1. 获取最小延迟 DOWNLOAD_DELAY
2. 获取最大延迟 AUTOTHROTTLE_MAX_DELAY
3. 设置初始下载延迟 AUTOTHROTTLE_START_DELAY
4. 当请求下载完成后,获取其"连接"时间 latency,即:请求连接到接受到响应头之间的时间
5. 用于计算的... AUTOTHROTTLE_TARGET_CONCURRENCY
target_delay = latency / self.target_concurrency
new_delay = (slot.delay + target_delay) / 2.0 # 表示上一次的延迟时间
new_delay = max(target_delay, new_delay)
new_delay = min(max(self.mindelay, new_delay), self.maxdelay)
slot.delay = new_delay
""" # 开始自动限速
# AUTOTHROTTLE_ENABLED = True
# The initial download delay
# 初始下载延迟
# AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
# 最大下载延迟
# AUTOTHROTTLE_MAX_DELAY = 10
# The average number of requests Scrapy should be sending in parallel to each remote server
# 平均每秒并发数
# AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received:
# 是否显示
# AUTOTHROTTLE_DEBUG = True # Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings """
18. 启用缓存
目的用于将已经发送的请求或相应缓存下来,以便以后使用 from scrapy.downloadermiddlewares.httpcache import HttpCacheMiddleware
from scrapy.extensions.httpcache import DummyPolicy
from scrapy.extensions.httpcache import FilesystemCacheStorage
"""
# 是否启用缓存策略
# HTTPCACHE_ENABLED = True # 缓存策略:所有请求均缓存,下次在请求直接访问原来的缓存即可
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.DummyPolicy"
# 缓存策略:根据Http响应头:Cache-Control、Last-Modified 等进行缓存的策略
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.RFC2616Policy" # 缓存超时时间
# HTTPCACHE_EXPIRATION_SECS = 0 # 缓存保存路径
# HTTPCACHE_DIR = 'httpcache' # 缓存忽略的Http状态码
# HTTPCACHE_IGNORE_HTTP_CODES = [] # 缓存存储的插件
# HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' """
19. 代理,需要在环境变量中设置
from scrapy.contrib.downloadermiddleware.httpproxy import HttpProxyMiddleware 方式一:使用默认
os.environ
{
http_proxy:http://root:woshiniba@192.168.11.11:9999/
https_proxy:http://192.168.11.11:9999/
}
方式二:使用自定义下载中间件 def to_bytes(text, encoding=None, errors='strict'):
if isinstance(text, bytes):
return text
if not isinstance(text, six.string_types):
raise TypeError('to_bytes must receive a unicode, str or bytes '
'object, got %s' % type(text).__name__)
if encoding is None:
encoding = 'utf-8'
return text.encode(encoding, errors) class ProxyMiddleware(object):
def process_request(self, request, spider):
PROXIES = [
{'ip_port': '111.11.228.75:80', 'user_pass': ''},
{'ip_port': '120.198.243.22:80', 'user_pass': ''},
{'ip_port': '111.8.60.9:8123', 'user_pass': ''},
{'ip_port': '101.71.27.120:80', 'user_pass': ''},
{'ip_port': '122.96.59.104:80', 'user_pass': ''},
{'ip_port': '122.224.249.122:8088', 'user_pass': ''},
]
proxy = random.choice(PROXIES)
if proxy['user_pass'] is not None:
request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])
encoded_user_pass = base64.encodestring(to_bytes(proxy['user_pass']))
request.headers['Proxy-Authorization'] = to_bytes('Basic ' + encoded_user_pass)
print "**************ProxyMiddleware have pass************" + proxy['ip_port']
else:
print "**************ProxyMiddleware no pass************" + proxy['ip_port']
request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port']) DOWNLOADER_MIDDLEWARES = {
'step8_king.middlewares.ProxyMiddleware': 500,
} """ """
20. Https访问
Https访问时有两种情况:
1. 要爬取网站使用的可信任证书(默认支持)
DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"
DOWNLOADER_CLIENTCONTEXTFACTORY = "scrapy.core.downloader.contextfactory.ScrapyClientContextFactory" 2. 要爬取网站使用的自定义证书
DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"
DOWNLOADER_CLIENTCONTEXTFACTORY = "step8_king.https.MySSLFactory" # https.py
from scrapy.core.downloader.contextfactory import ScrapyClientContextFactory
from twisted.internet.ssl import (optionsForClientTLS, CertificateOptions, PrivateCertificate) class MySSLFactory(ScrapyClientContextFactory):
def getCertificateOptions(self):
from OpenSSL import crypto
v1 = crypto.load_privatekey(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.key.unsecure', mode='r').read())
v2 = crypto.load_certificate(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.pem', mode='r').read())
return CertificateOptions(
privateKey=v1, # pKey对象
certificate=v2, # X509对象
verify=False,
method=getattr(self, 'method', getattr(self, '_ssl_method', None))
)
其他:
相关类
scrapy.core.downloader.handlers.http.HttpDownloadHandler
scrapy.core.downloader.webclient.ScrapyHTTPClientFactory
scrapy.core.downloader.contextfactory.ScrapyClientContextFactory
相关配置
DOWNLOADER_HTTPCLIENTFACTORY
DOWNLOADER_CLIENTCONTEXTFACTORY """ """
21. 爬虫中间件
class SpiderMiddleware(object): def process_spider_input(self,response, spider):
'''
下载完成,执行,然后交给parse处理
:param response:
:param spider:
:return:
'''
pass def process_spider_output(self,response, result, spider):
'''
spider处理完成,返回时调用
:param response:
:param result:
:param spider:
:return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)
'''
return result def process_spider_exception(self,response, exception, spider):
'''
异常调用
:param response:
:param exception:
:param spider:
:return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline
'''
return None def process_start_requests(self,start_requests, spider):
'''
爬虫启动时调用
:param start_requests:
:param spider:
:return: 包含 Request 对象的可迭代对象
'''
return start_requests 内置爬虫中间件:
'scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware': 50,
'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': 500,
'scrapy.contrib.spidermiddleware.referer.RefererMiddleware': 700,
'scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware': 800,
'scrapy.contrib.spidermiddleware.depth.DepthMiddleware': 900, """
# from scrapy.contrib.spidermiddleware.referer import RefererMiddleware
# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
SPIDER_MIDDLEWARES = {
# 'step8_king.middlewares.SpiderMiddleware': 543,
} """
22. 下载中间件
class DownMiddleware1(object):
def process_request(self, request, spider):
'''
请求需要被下载时,经过所有下载器中间件的process_request调用
:param request:
:param spider:
:return:
None,继续后续中间件去下载;
Response对象,停止process_request的执行,开始执行process_response
Request对象,停止中间件的执行,将Request重新调度器
raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
'''
pass def process_response(self, request, response, spider):
'''
spider处理完成,返回时调用
:param response:
:param result:
:param spider:
:return:
Response 对象:转交给其他中间件process_response
Request 对象:停止中间件,request会被重新调度下载
raise IgnoreRequest 异常:调用Request.errback
'''
print('response1')
return response def process_exception(self, request, exception, spider):
'''
当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
:param response:
:param exception:
:param spider:
:return:
None:继续交给后续中间件处理异常;
Response对象:停止后续process_exception方法
Request对象:停止中间件,request将会被重新调用下载
'''
return None 默认下载中间件
{
'scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware': 100,
'scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware': 300,
'scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware': 350,
'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': 400,
'scrapy.contrib.downloadermiddleware.retry.RetryMiddleware': 500,
'scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware': 550,
'scrapy.contrib.downloadermiddleware.redirect.MetaRefreshMiddleware': 580,
'scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware': 590,
'scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware': 600,
'scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware': 700,
'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware': 750,
'scrapy.contrib.downloadermiddleware.chunked.ChunkedTransferMiddleware': 830,
'scrapy.contrib.downloadermiddleware.stats.DownloaderStats': 850,
'scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware': 900,
} """
# from scrapy.contrib.downloadermiddleware.httpauth import HttpAuthMiddleware
# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# DOWNLOADER_MIDDLEWARES = {
# 'step8_king.middlewares.DownMiddleware1': 100,
# 'step8_king.middlewares.DownMiddleware2': 500,
# }

settings

11.TinyScrapy

 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import types
from twisted.internet import defer
from twisted.web.client import getPage
from twisted.internet import reactor class Request(object):
def __init__(self, url, callback):
self.url = url
self.callback = callback
self.priority = 0 class HttpResponse(object):
def __init__(self, content, request):
self.content = content
self.request = request class ChouTiSpider(object): def start_requests(self):
url_list = ['http://www.cnblogs.com/', 'http://www.bing.com']
for url in url_list:
yield Request(url=url, callback=self.parse) def parse(self, response):
print(response.request.url)
# yield Request(url="http://www.baidu.com", callback=self.parse) from queue import Queue
Q = Queue() class CallLaterOnce(object):
def __init__(self, func, *a, **kw):
self._func = func
self._a = a
self._kw = kw
self._call = None def schedule(self, delay=0):
if self._call is None:
self._call = reactor.callLater(delay, self) def cancel(self):
if self._call:
self._call.cancel() def __call__(self):
self._call = None
return self._func(*self._a, **self._kw) class Engine(object):
def __init__(self):
self.nextcall = None
self.crawlling = []
self.max = 5
self._closewait = None def get_response(self,content, request):
response = HttpResponse(content, request)
gen = request.callback(response)
if isinstance(gen, types.GeneratorType):
for req in gen:
req.priority = request.priority + 1
Q.put(req) def rm_crawlling(self,response,d):
self.crawlling.remove(d) def _next_request(self,spider):
if Q.qsize() == 0 and len(self.crawlling) == 0:
self._closewait.callback(None) if len(self.crawlling) >= 5:
return
while len(self.crawlling) < 5:
try:
req = Q.get(block=False)
except Exception as e:
req = None
if not req:
return
d = getPage(req.url.encode('utf-8'))
self.crawlling.append(d)
d.addCallback(self.get_response, req)
d.addCallback(self.rm_crawlling,d)
d.addCallback(lambda _: self.nextcall.schedule()) @defer.inlineCallbacks
def crawl(self):
spider = ChouTiSpider()
start_requests = iter(spider.start_requests())
flag = True
while flag:
try:
req = next(start_requests)
Q.put(req)
except StopIteration as e:
flag = False self.nextcall = CallLaterOnce(self._next_request,spider)
self.nextcall.schedule() self._closewait = defer.Deferred()
yield self._closewait @defer.inlineCallbacks
def pp(self):
yield self.crawl() _active = set()
obj = Engine()
d = obj.crawl()
_active.add(d) li = defer.DeferredList(_active)
li.addBoth(lambda _,*a,**kw: reactor.stop()) reactor.run()

参考版

更多文档参见:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html

高性能相关、Scrapy框架的更多相关文章

  1. 爬虫相关-scrapy框架介绍

    性能相关-进程.线程.协程 在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢. 串行执行 import requests def fetc ...

  2. python自动化开发-[第二十四天]-高性能相关与初识scrapy

    今日内容概要 1.高性能相关 2.scrapy初识 上节回顾: 1. Http协议 Http协议:GET / http1.1/r/n...../r/r/r/na=1 TCP协议:sendall(&qu ...

  3. day37 爬虫2(web微信、高性能相关、Scrapy)

    s16day37 爬虫2 参考博客:http://www.cnblogs.com/wupeiqi/articles/6229292.html 课堂代码:https://github.com/liyon ...

  4. python 爬虫相关含Scrapy框架

    1.从酷狗网站爬取 新歌首发的新歌名字.播放时长.链接等 from bs4 import BeautifulSoup as BS import requests import re import js ...

  5. 爬虫基础(五)-----scrapy框架简介

    ---------------------------------------------------摆脱穷人思维 <五> :拓展自己的视野,适当做一些眼前''无用''的事情,防止进入只关 ...

  6. 爬虫(九)scrapy框架简介和基础应用

    概要 scrapy框架介绍 环境安装 基础使用 一.什么是Scrapy? Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被集成了各种功能 ...

  7. 10.scrapy框架简介和基础应用

    今日概要 scrapy框架介绍 环境安装 基础使用 今日详情 一.什么是Scrapy? Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被 ...

  8. 5、爬虫系列之scrapy框架

    一 scrapy框架简介 1 介绍 (1) 什么是Scrapy? Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被集成了各种功能(高性能 ...

  9. scrapy框架简介和基础应用

    scrapy框架介绍 环境安装 基础使用 一.什么是Scrapy? Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被集成了各种功能(高性 ...

随机推荐

  1. 面向英特尔® x86 平台的 Unity* 优化指南: 第 1 部分

    原文地址 目录 工具 Unity 分析器 GPA 系统分析器 GPA 帧分析器 如要充分发挥 x86 平台的作用,您可以在项目中进行多种性能优化,以最大限度地提升性能. 在本指南中,我们将展示 Uni ...

  2. dubbo SpringContainer

    dubbo SpringContainer Spring启动类容器 SPI service provider interfaces 服务提供借口 Singleton 单例 ThreadSafe 线程安 ...

  3. Winrar去广告图文教程

    一.前言 1.1 Winrar 解压缩工具 市场上有很多优秀的压缩工具,常用的有Winrar 和360 压缩工具.Winrar是免费压缩工具,特色是每次使用都会弹出广告.影响用户体验和工作效率,当然最 ...

  4. pyqt5实现SMTP邮件发送

    # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'SMTP.ui' # # Created b ...

  5. tendermint 跟tikv结合

    import ( "fmt" "github.com/allegro/bigcache" "github.com/kooksee/usmint/cmn ...

  6. ES6的新特性(10)——Class 的基本语法

    Class 的基本语法 简介 JavaScript 语言中,生成实例对象的传统方法是通过构造函数.下面是一个例子. function Point(x, y) { this.x = x; this.y ...

  7. c# 调用c++dll二次总结

    1.pinvoke结构不对称,添加语句(网上有) 2.含回调函数,成员参数的结构体必须完全,尽管自己用不到. 3.加深对c++指针的理解.一般情况下,类型加*等效于c++中的ref.但对于short* ...

  8. 团队开发--NABCD

    团队成员介绍: 李青:绝对的技术控,团队中扮演“猪”的角色,勤干肯干,是整个团队的主心骨,课上紧跟老师的步伐,下课谨遵老师的指令,课堂效率高,他的编程格言“没有编不出来的程序,只有解决不了的bug”. ...

  9. TensorFlow:NameError: name ‘input_data’ is not defined

    在运行TensorFlow的MNIST实例时,第一步 import tensorflow.examples.tutorials.mnist.input_data mnist = input_data. ...

  10. Opendarlight Carbon 安装

    写在前面 目前最轻松的一次安装过程,感谢大翔哥的帮助. 安装过程 1.Zip包下载 找到Opendaylight官网,进入下载界面找到Carbon版本并下载. 2.Zip包解压 把这个zip压缩包解压 ...