洛谷 P3768 简单的数学题 解题报告
P3768 简单的数学题
题目描述
由于出题人懒得写背景了,题目还是简单一点好。
输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j)) \bmod p\),其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数。
刚才题面打错了,已修改
输入输出格式
输入格式:
一行两个整数\(p\)、\(n\)。
输出格式:
一行一个整数\((\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))\bmod p\)。
说明
对于\(20\%\)的数据,\(n \leq 1000\)。
对于\(30\%\)的数据,\(n \leq 5000\)。
对于\(60\%\)的数据,\(n \leq 10^6\),时限\(1s\)。
对于另外\(20\%\)的数据,\(n \leq 10^9\),时限\(3s\)。
对于最后\(20\%\)的数据,\(n \leq 10^{10}\),时限\(6s\)。
对于\(100\%\)的数据,\(5 \times 10^8 \leq p \leq 1.1 \times 10^9\)且\(p\)为质数。
从各种方向推推式子,你会差不多发现有
\]
\]
其中\(F(n)=\sum\limits_{i=1}^ni\)
然后上杜教筛设\(\mathbf f(n)=n^2\varphi(n)\),则有
\]
带进去杜教筛得到
\]
然后小学奥数一波算前缀和就行了
小心爆\(long \ long\)
Code:
#include <cstdio>
#include <unordered_map>
#define ll long long
const int N=5e6;
ll n,mod,phi[N+10],inv2,inv6;
int pri[N+10],ispri[N+10],cnt;
ll qp(ll d,ll k){ll re=1;while(k){if(k&1)re=re*d%mod;d=d*d%mod,k>>=1;}return re;}
ll f(ll x){x%=mod;return x*(x+1)%mod*inv2%mod;}
ll g(ll x){x%=mod;return x*(x+1)%mod*(2*x%mod+1)%mod*inv6%mod;}
void init()
{
phi[1]=1;
for(int i=2;i<=N;i++)
{
if(!ispri[i])
{
phi[i]=i-1;
pri[++cnt]=i;
}
for(int j=1;j<=cnt&&i*pri[j]<=N;j++)
{
ispri[i*pri[j]]=1;
if(i%pri[j]==0){phi[i*pri[j]]=phi[i]*pri[j]%mod;break;}
else phi[i*pri[j]]=phi[i]*(pri[j]-1)%mod;
}
}
for(int i=1;i<=N;i++)
phi[i]=(phi[i]*i%mod*i%mod+phi[i-1])%mod;
}
std::unordered_map <ll,ll> Phi;
ll calphi(ll n)
{
if(n<=N) return phi[n];
if(Phi.find(n)!=Phi.end()) return Phi[n];
ll ret=f(n)*f(n)%mod;
for(ll l=2,r;l<=n;l=r+1)
{
r=n/(n/l);
(ret-=(calphi(n/l)*(g(r)-g(l-1))%mod))%=mod;
}
ret=(ret%mod+mod)%mod;
return Phi[n]=ret;
}
int main()
{
scanf("%lld%lld",&mod,&n);
init();
ll ans=0;inv6=qp(6,mod-2);inv2=qp(2,mod-2);
for(ll l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
(ans+=f(n/l)*f(n/l)%mod*(calphi(r)-calphi(l-1))%mod)%=mod;
}
ans=(ans%mod+mod)%mod;
printf("%lld\n",ans);
return 0;
}
2018.11.26
洛谷 P3768 简单的数学题 解题报告的更多相关文章
- 洛谷P3768 简单的数学题解题报告
$$\begin{eqnarray}&\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\\&\sum_{d=1}^{n}\sum_{i=1}^{n}\su ...
- 【刷题】洛谷 P3768 简单的数学题
题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd ...
- 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...
- 洛谷 P3768 简单的数学题
https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...
- 洛谷P3768 简单的数学题
解: 神奇的一批......参观yyb巨神的博客. 大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积. 然后发现有个地方我们除法的除数是乘积,于是换 ...
- 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)
传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...
- 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...
- 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...
- 洛谷 P3768 简单的数学题 (莫比乌斯反演)
题意:求$(\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j))mod p$(p为质数,n<=1e10) 很显然,推式子. $\sum_{i=1}^{n}\sum_{j ...
随机推荐
- nuget必备插件(待续)
DevLib.ExtensionMethods Extend Z.ExtensionMethods
- google::protobuf 编译方法
这两天用了一下Protobuf 感觉很方便, 记录一下编译过程, 以做务忘(需要安装cmake): 1: 下载地址: https://developers.google.com/protocol-bu ...
- 英特尔® 实感™ 深度摄像头代码示例 – R200 摄像头数据流
英特尔开发人员专区原文地址 简介 该可下载代码示例展示了如何使用面向 Windows 的英特尔® 实感™ SDK* 捕捉和查看用 C#/XAML 编写的原始 R200 摄像头数据流. Visual S ...
- Fulfilling Work: The Shippers More entrepreneurs hire 'fulfillment' outfits to store and ship their products
By Stu Woo June 23, 2011 Brett Teper faced a logistical problem when he and a partner founded ModPro ...
- Scrum立会报告+燃尽图(十月十三日总第四次):前期宣传相关工作
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2194 Scrum立会master:刘欣 一.小组介绍 组长:付佳 组员: ...
- 王者荣耀交流协会final发布WBS+PSP
WBS: PSP: 时间为估计,大致精确. 类型 personal software process stages 预估时间 实际花费时间 planning 计划 4h 4h estimate 4h ...
- Kotlin 学习笔记(一)
(Kotlin 学习笔记的文档结构基本按照 Java 核心技术一书的目录排列) 基本程序设计结构 数据类型 数字 类型 宽度 Double 64 Float 32 Long 64 Int 32 Sho ...
- 《C》指针
储存单元: 不同类型的数据所占用的字节不同,上面一个长方形格子表示4个字节 变量: 变量的值,就是存储的内容.变量的名就相当于地址的名.根据变量类型分配空间:通过变量名引用变量的值,程序经过编译将变量 ...
- python 中如何计算时间差...
Q:如何方便的计算两个时间的差,如两个时间相差几天,几小时等 A:使用datetime模块可以很方便的解决这个问题,举例如下: >>> import datetime>> ...
- Opendarlight Carbon 安装
写在前面 目前最轻松的一次安装过程,感谢大翔哥的帮助. 安装过程 1.Zip包下载 找到Opendaylight官网,进入下载界面找到Carbon版本并下载. 2.Zip包解压 把这个zip压缩包解压 ...