[ZJOI2014]力 FFT
题面
题解:
\]
\]
对式子的2个部分分别计算。
令\(S_i = i^2\)
\]
看上去就是卷积形式,FFT计算即可。
对于后半部分,将序列翻转,\(i > j\)就变成\(i < j\)了,而\(S\)可以看做距离,所以不会变,直接计算就好了.
计算完之后需要将序列翻转回来
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define ld double
#define LL long long
#define AC 310000
const double pi = acos(-1);
int n, lim = 1, len;
int Next[AC];
ld q[AC], f[AC];
struct node{
ld x, y;
node(ld xx = 0, ld yy = 0){x = xx, y = yy;}
}a[AC], b[AC], s[AC];
node operator * (node x, node y){return node(x.x * y.x - x.y * y.y, x.x * y.y + x.y * y.x);}
node operator + (node x, node y){return node(x.x + y.x, x.y + y.y);}
node operator - (node x, node y){return node(x.x - y.x, x.y - y.y);}
inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
}
void FFT(node *A, int opt)
{
for(R i = 0; i < lim; i ++)
if(i < Next[i]) swap(A[i], A[Next[i]]);
for(R i = 1; i < lim ; i <<= 1)
{
node W(cos(pi / i), opt * sin(pi / i));
for(R r = i << 1, j = 0; j < lim; j += r)
{
node w(1, 0);
for(R k = 0; k < i ; k ++, w = w * W)
{
node x = A[j + k], y = w * A[j + k + i];
A[j + k] = x + y, A[j + k + i] = x - y;
}
}
}
}
void pre()
{
n = read() - 1;
for(R i = 0; i <= n; i ++) scanf("%lf", &q[i]);
while(lim <= n + n) lim <<= 1, ++ len;
for(R i = 0; i <= lim; i ++)
Next[i] = (Next[i >> 1] >> 1) | ((i & 1) << (len - 1));
}
void work()
{
for(R i = 0; i <= n; i ++)
{
if(i != 0) s[i].x = 1.0 / i / i;
a[i].x = q[i], b[n - i].x = q[i];
}
FFT(s, 1);
FFT(a, 1);
for(R i = 0; i < lim; i ++) a[i] = a[i] * s[i];
FFT(a, -1);
for(R i = 0; i < lim; i ++) f[i] = a[i].x / lim;
FFT(b, 1);
for(R i = 0; i < lim; i ++) b[i] = b[i] * s[i];
FFT(b, -1);
for(R i = 0; i <= n; i ++)
if(i < n - i) swap(b[i], b[n - i]);
for(R i = 0; i < lim; i ++) f[i] -= b[i].x / lim;
for(R i = 0; i <= n; i ++) printf("%.3lf\n", f[i]);
}
int main()
{
//freopen("in.in", "r", stdin);
pre();
work();
//fclose(stdin);
return 0;
}
[ZJOI2014]力 FFT的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- 【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...
- BZOJ 3527: [Zjoi2014]力(FFT)
我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...
- bzoj 3527 [Zjoi2014]力——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...
- bzoj 3527 [Zjoi2014] 力 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...
- BZOJ 3527 [Zjoi2014]力 ——FFT
[题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
随机推荐
- docker制作自己的镜像并上传dockerhub
1.首先注册自己的dockerhub账号,注册地址:https://hub.docker.com 2.在linux服务器登录自己的账号:docker login --username=qiaoyeye ...
- HDU-1053:Advanced Fruits(LCS+路径保存)
链接:HDU-1053:Advanced Fruits 题意:将两个字符串合成一个串,不改变原串的相对顺序,可将相同字母合成一个,求合成后最短的字符串. 题解:LCS有三种状态转移方式,将每个点的状态 ...
- python-map, reduce, filter, lambda
目录 lambda表达式 reduce()函数 map()函数 filter()函数 tips:以下使用到的迭代器,可迭代对象,生成器等概念可以参见我的另一篇博客 lambda表达式 主要用于一行写完 ...
- python程序设计——面向对象程序设计:继承
继承是为代码复用和设计复用而设计的 在继承关系中,已有的.设计好的类称为父类或基类,新设计的类为子类或派生类 派生类可以继承父类的公有成员,但不能继承其私有成员 如果需要在派生类中调用基类的方法,可以 ...
- Spring学习(3):Spring概述(转载)
1. Spring是什么? Spring是一个开源的轻量级Java SE(Java 标准版本)/Java EE(Java 企业版本)开发应用框架,其目的是用于简化企业级应用程序开发. 在面向对象思想中 ...
- [T-ARA][HOLIDAY]
歌词来源:http://music.163.com/#/song?id=22704407 HOLI HOLI DAY [HOLI HOLI DAY] 뚜뚜 뚜루루 [ddu-ddu ddu-lu-lu ...
- text-align与vertical-align属性的区别
1.text-align属性设置元素在水平方向(x轴)的位置 text-align:left://文本居左 text-align:center://文本居中 text-align:right: //文 ...
- Manacher算法——求最长回文子串
首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...
- Factorials 阶乘(思维)
Description N 的阶乘写作N!表示小于等于N的所有正整数的乘积.阶乘会很快的变大,如13!就必须用32位整数类型来存储,70!即使用浮点数也存不下了.你的任务是 找到阶乘最后面的非零位.举 ...
- “Hello World!”团队召开的第六次会议
团队“Hello World!”团队召开的第六次会议. 博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.Todo List 六.会议照片 七.燃尽图 一.会议时间 2017年1 ...