[ZJOI2014]力 FFT
题面
题解:
\]
\]
对式子的2个部分分别计算。
令\(S_i = i^2\)
\]
看上去就是卷积形式,FFT计算即可。
对于后半部分,将序列翻转,\(i > j\)就变成\(i < j\)了,而\(S\)可以看做距离,所以不会变,直接计算就好了.
计算完之后需要将序列翻转回来
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define ld double
#define LL long long
#define AC 310000
const double pi = acos(-1);
int n, lim = 1, len;
int Next[AC];
ld q[AC], f[AC];
struct node{
ld x, y;
node(ld xx = 0, ld yy = 0){x = xx, y = yy;}
}a[AC], b[AC], s[AC];
node operator * (node x, node y){return node(x.x * y.x - x.y * y.y, x.x * y.y + x.y * y.x);}
node operator + (node x, node y){return node(x.x + y.x, x.y + y.y);}
node operator - (node x, node y){return node(x.x - y.x, x.y - y.y);}
inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
}
void FFT(node *A, int opt)
{
for(R i = 0; i < lim; i ++)
if(i < Next[i]) swap(A[i], A[Next[i]]);
for(R i = 1; i < lim ; i <<= 1)
{
node W(cos(pi / i), opt * sin(pi / i));
for(R r = i << 1, j = 0; j < lim; j += r)
{
node w(1, 0);
for(R k = 0; k < i ; k ++, w = w * W)
{
node x = A[j + k], y = w * A[j + k + i];
A[j + k] = x + y, A[j + k + i] = x - y;
}
}
}
}
void pre()
{
n = read() - 1;
for(R i = 0; i <= n; i ++) scanf("%lf", &q[i]);
while(lim <= n + n) lim <<= 1, ++ len;
for(R i = 0; i <= lim; i ++)
Next[i] = (Next[i >> 1] >> 1) | ((i & 1) << (len - 1));
}
void work()
{
for(R i = 0; i <= n; i ++)
{
if(i != 0) s[i].x = 1.0 / i / i;
a[i].x = q[i], b[n - i].x = q[i];
}
FFT(s, 1);
FFT(a, 1);
for(R i = 0; i < lim; i ++) a[i] = a[i] * s[i];
FFT(a, -1);
for(R i = 0; i < lim; i ++) f[i] = a[i].x / lim;
FFT(b, 1);
for(R i = 0; i < lim; i ++) b[i] = b[i] * s[i];
FFT(b, -1);
for(R i = 0; i <= n; i ++)
if(i < n - i) swap(b[i], b[n - i]);
for(R i = 0; i < lim; i ++) f[i] -= b[i].x / lim;
for(R i = 0; i <= n; i ++) printf("%.3lf\n", f[i]);
}
int main()
{
//freopen("in.in", "r", stdin);
pre();
work();
//fclose(stdin);
return 0;
}
[ZJOI2014]力 FFT的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- 【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...
- BZOJ 3527: [Zjoi2014]力(FFT)
我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...
- bzoj 3527 [Zjoi2014]力——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...
- bzoj 3527 [Zjoi2014] 力 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...
- BZOJ 3527 [Zjoi2014]力 ——FFT
[题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
随机推荐
- idea 新建 maven项目遇到的一些问题
idea创建好了maven项目之后,需要先在项目中添加 Web,这里创建Web时就会要求fix一个Artifacts,新建即可,然后面板设置默认即可(shift+ctrl+alt+s 打开面板): 然 ...
- 八、EnterpriseFrameWork框架基础功能之自定义报表
本章写关于框架中的“自定义报表”,类似上章“字典管理”也是三部分功能组成,包括配置报表.对报表按角色授权.查看报表:其核心思想就是实现新增一个报表而不用修改程序代码.不用升级,只需要编写一个存储过程, ...
- Jmeter使用JDBC链接数据库进行压力测试
一.关于性能测试 对数据库进行压测时,我们需要关注的几个方面: 1.系统相关指标,诸如:系统CPU/内存/IO等 2.进程相关指标,诸如:mysql该数据库的对应的进程占用CPU/内存/IO等 3.数 ...
- VS2013只显示会附加到进程,无法启动调试
今天在使用VS2013的时候,打开突然发现,只显示附加到进程,无法进行调试,调试位置显示灰色,到网上各处寻求答案,本以为是个大问题,没想到只是个小问题.主要原因只是后台开太多东西了,导致VS2013运 ...
- AsciiPic Java视频转成字符画
AsciiPic Java视频转成字符画 github下载 https://github.com/dejavudwh/AsciiPic 运行截图 //没有做GUI 比较简陋 节省时间 main里的文件 ...
- 生成dataset的几种方式
1.常用的方式通过sparksession读取外部文件或者数据生成dataset(这里就不讲了) 注: 生成Row对象的方法提一下:RowFactory.create(x,y,z),取Row中的数据 ...
- Python中元祖,列表,字典的区别
Python中有3种內建的数据结构:列表.元祖和字典: 1.列表 list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个序列的项目. 列表中的项目应该包括在方括号中,这样Python就知道 ...
- Centos7部署Kubernetes集群(单工作节点)+配置dashboard可视化UI
目标:docker+kubernetes+cadvosor+dashboard 一:物理硬件 两台虚拟机(centos7):一台做为主节点(master),一台做为工作节点(node) [root@M ...
- hibernate.hbm.xml文件配置入门小结(1)
在Hibernate中,各表的映射文件xxx.hbm.xml可以通过工具生成,例如在使用MyEclipse开发时,它提供了自动生成映射文件的工具. hibernate.hbm.xml文件的基本结构如下 ...
- SAP(ABAP) ABAP内部外部数据转换常用function
文本相关CONVERSION_EXIT_CUNIT_OUTPUT 将内部单位转为单位文本CONVERSION_EXIT_ISOLA_OUTPUT 根据语言代码取文本CONVERSI ...