POJ.3279 Fliptile (搜索+二进制枚举+开关问题)
POJ.3279 Fliptile (搜索+二进制枚举+开关问题)
题意分析
题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置(如果有)的0变成1,1变成0。现在求需要按多少次,才能使得整个map全部变成0。
此题解法与 UVA.11464 Even Parity 有异曲同工之妙。
首先可以看出,最多每个位置按一次,因为再按的话,相当于没按。如果我们枚举每一个位置是否按的话,2^(n*n)的复杂度爆炸。
接着思考,其实相对来说,下一行是否按,可以根据上一行的情况来决定。举个例子,如果上一行为1,那么下一行是一定要按的,按之后可以让上一行变成0.那么下下一行也是这个道理。
所以可以仅仅枚举第一行,就可以一次判断出来整个棋盘哪个位置按了,哪个没按。
说道这里可见这个题是有开关问题的性质。
至于如何枚举第一行,这里涉及到二进制枚举的方法,有兴趣的读者可以直接看UVA.11464 Even Parity或者从网上找相关资料,这里不再赘述。
需要注意的一点是,要判断最后一行是否全部为0,如果不是白色,说明这种方案不可行。要舍弃。
代码总览
#include <cstdio>
#include <algorithm>
#include <cstring>
#define nmax 20
#define inf 1000000
using namespace std;
int mp[nmax][nmax],flip[nmax][nmax],ans[nmax][nmax];
int spx[5] = {0,0,1,0,-1};
int spy[5] = {0,1,0,-1,0};
int m,n;
int ret = 0;
bool check(int x, int y)
{
if(x>=0 && x <m && y>=0 && y<n) return true;
else return false;
}
int handle(int x, int y)
{
int temp = mp[x][y];
for(int i = 0;i<5;++i){
int nx = x + spx[i];
int ny = y + spy[i];
if(check(nx,ny)){
temp+=flip[nx][ny];
}
}
return temp % 2;
}
int Process()
{
for(int i = 1;i<m;++i){
for(int j = 0;j<n;++j){
if(handle(i-1,j)){
flip[i][j] = 1;
}
}
}
for(int i = 0;i<n;++i){
if(handle(m-1,i)) return inf;
}
int temp = 0;
for(int i = 0;i<m;++i){
for(int j = 0;j<n;++j){
temp+=flip[i][j];
}
}
return temp;
}
void update()
{
for(int i = 0;i<m;++i){
for(int j = 0;j<n;++j){
ans[i][j] = flip[i][j];
}
}
}
int main()
{
while(scanf("%d %d",&m,&n) != EOF){
memset(mp,0,sizeof(mp));
memset(ans,0,sizeof(ans));
for(int i = 0;i<m;++i){
for(int j = 0;j<n;++j)
scanf("%d",&mp[i][j]);
}
ret = inf;
int temp = 0;
for(int i = 0;i<(1<<n);++i){
memset(flip,0,sizeof(flip));
for(int j = 0;j<n;++j){
flip[0][j] = 1&(i>>j);
}
temp = Process();
if(temp < ret){
ret = temp;
update();
}
}
if(ret == inf) printf("IMPOSSIBLE\n");
else{
for(int i = 0;i<m;++i){
for(int j = 0;j<n;++j){
if(j == 0) printf("%d",ans[i][j]);
else printf(" %d",ans[i][j]);
}
printf("\n");
}
}
}
return 0;
}
POJ.3279 Fliptile (搜索+二进制枚举+开关问题)的更多相关文章
- POJ 3279 Fliptile (二进制+搜索)
[题目链接]click here~~ [题目大意]: 农夫约翰知道聪明的牛产奶多. 于是为了提高牛的智商他准备了例如以下游戏. 有一个M×N 的格子,每一个格子能够翻转正反面,它们一面是黑色,还有一面 ...
- (简单) POJ 3279 Fliptile,集合枚举。
Description Farmer John knows that an intellectually satisfied cow is a happy cow who will give more ...
- 状态压缩+枚举 POJ 3279 Fliptile
题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...
- POJ 3279 Fliptile(翻格子)
POJ 3279 Fliptile(翻格子) Time Limit: 2000MS Memory Limit: 65536K Description - 题目描述 Farmer John kno ...
- POJ 3279 Fliptile(反转 +二进制枚举)
Fliptile Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13631 Accepted: 5027 Descrip ...
- poj 3279 Fliptile(二进制搜索)
Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He ha ...
- POJ 3279 Fliptile (二进制枚举)
<题目链接> <转载于 >>> > 题目大意: 给定一个M*N矩阵,有些是黑色(1表示)否则白色(0表示),每翻转一个(i,j),会使得它和它周围4个格变为另 ...
- poj 3279 Fliptile(二进制)
http://poj.org/problem?id=3279 在n*N的矩阵上,0代表白色,1代表黑色,每次选取一个点可以其颜色换过来,即白色变成黑色,黑色变成白色,而且其上下左右的点颜色也要交换,求 ...
- POJ - 3279 Fliptile(反转---开关问题)
题意:有一个M*N的网格,有黑有白,反转使全部变为白色,求最小反转步数情况下的每个格子的反转次数,若最小步数有多个,则输出字典序最小的情况.解不存在,输出IMPOSSIBLE. 分析: 1.枚举第一行 ...
随机推荐
- EOJ3134. 短信激活码(大数幂取模)
题面 输入只有5位,所以转化为long long类型用快速幂取模 前面补0的写法printf("%05lld\n",ans);如果ans不足5位会在前面补0 #include< ...
- Could not resolve placeholder 'jdbc.url' in value "${jdbc.url}"
写完接口之后,发现报了这个错误,查了一下发现,spring不允许使用两个 <context:property-placeholder>
- springjdbc使用c3p0连接池报错 java.lang.NoClassDefFoundError: com/mchange/v2/ser/Indirector
MyMaincom.test.sunc.MyMaintestMethod(com.test.sunc.MyMain)org.springframework.beans.factory.BeanCrea ...
- mac安装php分词工具xunsearch出现找不到bio.h的解决办法
下载xunsearch后安装出现如下错误,在xunsearch官方论坛未找到答案,此方案不仅用于参考解决安装xunsearch,其它编辑安装出现的问题同样可以参考 -n Checking scws . ...
- 【dp】New Keyboard
http://codeforces.com/gym/101397 B dp[i][j][k]: i为前一个行动的状态,0-switch.1-type,j为当前状态layout的编号,k 是已键入的字符 ...
- map的默认排序和自定义排序
STL的容器map为我们处理有序key-value形式数据提供了非常大的便利,由于内部红黑树结构的存储,查找的时间复杂度为O(log2N). 一般而言,使用map的时候直接采取map<typen ...
- MySQL 备份和恢复 理论知识
为什么要备份 数据无价 制定备份策略的注意点 1:可容忍丢失多少数据 2:恢复需要在多长时间内完成 3:备份的对象 数据.二进制日志和InnoDB的事务日志.SQL代码(存储过 ...
- "Scrum站立会议"浅析
目录 Scrum Scrum Meeting功能及要点 Scrum Meeting点评 Scrum 定义:是一种软件开发流程.它并不是一项技术,这种开发方式的主要驱动核心是人,它采用的是迭代式开发. ...
- (四)Jmeter之逻辑控制器(Logic Controller)
Jmeter之逻辑控制器(Logic Controller) 前言: 1. Jmeter官网对逻辑控制器的解释是:“Logic Controllers determine the order in w ...
- [转帖]IBM收购Red Hat
来源cnbeta:https://www.cnbeta.com/articles/tech/782009.htm 2018年10月28 日,IBM 宣布收购 Linux 巨头 Red Hat.公告中称 ...