这题说的是 有n 层每层 有两个门 每个门 可以到达上一层的两个门,然后求从a 层到达b 层的方案总数, 不能后退, 在同一层中不能从第一个门到达另一层

我们只要我们可以对于每个 区间内 有dp[o][2][2] , 表示 在这个区间中 从区间起始到达区间末尾 的两个门分别设 a1,a2, b1,b2, dp[o][0][0],和dp[o][0][1],表示从从a1到b1 和 a2 到 b1 的方案总数 然后同理dp[o][1][0]dp[o][1][1],

得到转移 通过线段树去优化他 得到转移 一旦ij 两地相通那么显然 i这个点 的 在前面这个区间的a1 a2 相应的乘上 后面 这个区间在 j 这个位置开始的方案总数, 得到他们在总区间结束时的在 b1上有多少个方案从前面区间的 a1 和a2 过来,通过这样得到整个区间的值

        for(int i=; i<; ++i)
for
(int j=; j<; ++j)
if
(star[mid][i][j]){
value[o].M[][]=(value[o].M[][] + value[o*].M[i][] * value[o*+].M[][j] % mod )%mod;
value[o].M[][]=(value[o].M[][] + value[o*].M[i][] * value[o*+].M[][j]%mod )%mod;
value[o].M[][]=(value[o].M[][] + value[o*].M[i][] * value[o*+].M[][j]%mod )%mod;
value[o].M[][]=(value[o].M[][] + value[o*].M[i][] * value[o*+].M[][j]%mod )%mod;
}
#include <iostream>
#include <cstdio>
#include <string.h>
using namespace std;
typedef __int64 ll;
const int maxn = ;
const ll mod = ;
int loc,x,y;
struct Matx{
ll M[][];
}P;
bool star[maxn+][][];
void maintain(int mid ,Matx &A,Matx B){
Matx ans;
memset(ans.M,,sizeof(ans.M));
for(int i=; i<; ++i)
for(int j=; j<; ++j)
if(star[mid][i][j]){
ans.M[][]=(ans.M[][] + A.M[i][] * B.M[][j] )%mod;
ans.M[][]=(ans.M[][] + A.M[i][] * B.M[][j] )%mod;
ans.M[][]=(ans.M[][] + A.M[i][] * B.M[][j] )%mod;
ans.M[][]=(ans.M[][] + A.M[i][] * B.M[][j] )%mod;
}
for(int i=; i<; ++i)
for(int j=; j<; ++j)
A.M[i][j]=ans.M[i][j];
}
struct Itree{
Matx value[maxn*]; void tain(int o,int mid){
memset(value[o].M,,sizeof(value[o].M));
for(int i=; i<; ++i)
for(int j=; j<; ++j)
if(star[mid][i][j]){
value[o].M[][]=(value[o].M[][] + value[o*].M[i][] * value[o*+].M[][j] % mod )%mod;
value[o].M[][]=(value[o].M[][] + value[o*].M[i][] * value[o*+].M[][j]%mod )%mod;
value[o].M[][]=(value[o].M[][] + value[o*].M[i][] * value[o*+].M[][j]%mod )%mod;
value[o].M[][]=(value[o].M[][] + value[o*].M[i][] * value[o*+].M[][j]%mod )%mod;
}
}
void build(int o, int L, int R){
if(L==R){
value[o].M[][]=;
value[o].M[][]=;
value[o].M[][]=;
value[o].M[][]=;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
star[L][i][j]=true;
return ;
}
int mid= (L+R)/;
build( o* , L , mid );
build( o*+ , mid+ , R );
tain(o,mid);
} void update(int o, int L, int R){
if(L==R){
star[L][x][y]=star[L][x][y]==false;
return ;
}
int mid=(L+R)/;
if(loc<=mid) update(o*,L,mid);
else update(o*+,mid+,R);
tain(o, mid);
}
void query(int o, int L, int R){
if( (L>=x&&R<=y) ){
if(loc==){
P=value[o];loc=;
}else{
maintain(L-,P,value[o]);
}
return ;
}
int mid = (L+R)/;
if(x<=mid)
query(o*,L,mid);
if(y>mid)
query(o*+,mid+,R);
}
}T;
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==){
T.build(,,n);
for(int i=; i<m; ++i){
loc=;
int op;
scanf("%d",&op);
if(op==) {
scanf("%d%d",&x,&y);
T.query(,,n);
ll ans=;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
ans=(ans+ P.M[i][j])%mod;
printf("%I64d\n",ans);
}else{
scanf("%d%d%d",&loc,&x,&y);
x--; y--;
T.update(,,n);
}
}
}
return ;
}

hdu 5068 线段树加+dp的更多相关文章

  1. hdu 5068 线段树维护矩阵乘积

    http://acm.hdu.edu.cn/showproblem.php?pid=5068 题意给的略不清晰 m个询问:从i层去j层的方法数(求连段乘积)或者修改从x层y门和x+1层z门的状态反转( ...

  2. hdu 5068(线段树+矩阵乘法)

    矩阵乘法来进行所有路径的运算, 线段树来查询修改. 关键还是矩阵乘法的结合律. Harry And Math Teacher Time Limit: 5000/3000 MS (Java/Others ...

  3. hdu 4533 线段树(问题转化+)

    威威猫系列故事——晒被子 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  4. hdu 1542 线段树扫描(面积)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  5. hdu 1166 线段树(sum+单点修改)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  6. Codeforces 834D The Bakery 【线段树优化DP】*

    Codeforces 834D The Bakery LINK 题目大意是给你一个长度为n的序列分成k段,每一段的贡献是这一段中不同的数的个数,求最大贡献 是第一次做线段树维护DP值的题 感觉还可以, ...

  7. 【题解】P4247 [清华集训]序列操作(线段树修改DP)

    [题解]P4247 [清华集训]序列操作(线段树修改DP) 一道神仙数据结构(DP)题. 题目大意 给定你一个序列,会区间加和区间变相反数,要你支持查询一段区间内任意选择\(c\)个数乘起来的和.对1 ...

  8. 【POJ 2750】 Potted Flower(线段树套dp)

    [POJ 2750] Potted Flower(线段树套dp) Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4566   ...

  9. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

随机推荐

  1. 使用Node.js完成路由

    首先先看一下文件的结构: 我想通过改变不同的路由进不同的页面, 先看这几个HTML页面: 404: <!DOCTYPE html> <html lang="en" ...

  2. js中hover事件时候的BUG以及解决方法

    hover事件是我们在开发前段时候遇到的稀松平常的问题,但是有没有发现会出现有一个BUg,比如,你移动到一个元素上,让它执行一个方法,然后你快速的移入移出的时候,他会进行亮瞎你眼睛的频闪效果,而且跟得 ...

  3. 动态调整UITableViewCell高度的实现方法

    - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPa ...

  4. 总结微信小程序开发中遇到的坑

    总结微信小程序开发中遇到的坑,一些坑你得一个一个的跳啊,/(ㄒoㄒ)/~~ 1,页面跳转和参数传递实例 首先说一下我遇到的需求有一个我的消息页面,里面的数据都是后端返回的,返回的数据大致如下,有一个是 ...

  5. Jquery checkbox选中问题

    checkbox中有.checked的写法,判断当前是否是选中状态,不过这种是针对[object HTMLInputElement]这种类型的,而对于[object Object]这种类型是不能使用的 ...

  6. vux 全局注册组件

    背景:调试better-scroll的时候进行封装,作为组件来调用: 希望:全局注册组件: 1,在src的main.js下: 这样就可以用了:

  7. eclipse启动报错 Problems occurred when invoking code from plug-in: "org.eclipse.jface"

    eclipse在使用中可能会发生错误: Problems occurred when invoking code from plug-in: "org.eclipse.jface" ...

  8. ORA-01153: an incompatible media recovery is active

    ORA-01153: an incompatible media recovery is active Cause: Attempted to start an incompatible media ...

  9. RPM命令详解(安装、升级、卸载)

    rpm 常用命令1.安装一个包 # rpm -ivh 2.升级一个包 # rpm -Uvh 3.卸载一个包 # rpm -e 4.安装参数 --force 即使覆盖属于其它包的文件也强迫安装 --no ...

  10. 限制ip ssh远程登录

    有时候为了服务器的安全考虑,我们可以在服务器上做限制,禁止其他ip地址连接服务器. 方法一:修改ssh配置文件 其实做这个操作很简单,只需要改/etc/ssh/sshd_config配置文件,再最后一 ...