看了网上的一些用tf实现的FM,很多都没有考虑FM实际使用中数据样本稀疏的问题。

我在实现的时候使用 embedding_lookup_sparse来解决这个问题。

对于二阶部分,由于embedding_lookup_sparse没法计算 和的平方 和 平方的和,我参考embedding_lookup_sparse中sum和mean两种实现,自己写了一下。不过数据输入部分还需要改一下,改用dataset会更好。

代码如下:

import tensorflow as tf
from tensorflow.python.ops import math_ops
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
import random
import numpy as np
from sklearn import metrics class Args():
feature_size=925
field_size=15
embedding_size = 20
epoch = 3
batch_size = 2000
learning_rate = 0.001
l2_reg_rate = 0.001
checkpoint_dir = "./model"
is_training = True class FMmodel():
def __init__(self):
self.feature_sizes = Args.feature_size
self.field_size = Args.field_size
self.embedding_size = Args.embedding_size
self.l2_reg_rate = Args.l2_reg_rate
self.epoch = Args.epoch
self.learning_rate = Args.learning_rate
self.weight = {}
self.model_path = Args.checkpoint_dir
self.batch_size = Args.batch_size def build_model(self,is_warm_up=False):
self.x1_index = tf.sparse_placeholder(tf.int64,name="x1_index")
self.x1_value = tf.sparse_placeholder(tf.float32,name="x1_value")
self.labels = tf.placeholder(tf.float32,name="labels",shape=[None,1])
init_randomW = tf.random_normal_initializer(mean=0.0, stddev=0.05, seed=None, dtype=tf.float32)
init_randomV = tf.random_normal_initializer(mean=0.0, stddev=0.00001, seed=None, dtype=tf.float32)
#特征向量
self.weight["feature_weight"] = tf.get_variable(
shape =[self.feature_sizes,self.embedding_size],
name='feature_weight',
initializer=init_randomV
) #一次项中的W系数
self.weight["feature_first"] = tf.get_variable(
shape=[self.feature_sizes,1],
initializer=init_randomW,
name='feature_first') self.weight["bais"] = tf.get_variable(shape=[1,1],initializer=tf.constant_initializer(0.0),name="bais") #[batch_size,1] 线性部分的计算结果 xi*wi求和
self.line_part1 = tf.nn.embedding_lookup_sparse(self.weight["feature_first"],
sp_ids=self.x1_index,sp_weights=self.x1_value,combiner='sum')
self.line_part1_shape = tf.shape(self.line_part1)
#[batch*embedding_size]
self.embedding_part1_sum_square = tf.nn.embedding_lookup_sparse(self.weight["feature_weight"],
sp_ids=self.x1_index,sp_weights=self.x1_value,combiner='sum') #[batch_size,embeding_size]
ids_1 = self.x1_index.values self.ids1,self.idx1 = tf.unique(ids_1) self.weight_1 = self.x1_value.values self.weight_1 = tf.reshape(self.weight_1,[-1,1]) if self.weight_1.dtype != dtypes.float32:
self.weight_1 = math_ops.cast(self.weight_1,dtypes.float32) #[batch_size,embedding_size]
self.embedding_1 = tf.nn.embedding_lookup(self.weight["feature_weight"],ids=self.ids1) self.new_embedding_1 = tf.gather(self.embedding_1,self.idx1) #[batch_value_count,embedding_size]
self.embedding_weight_part1 =tf.multiply(self.weight_1,self.new_embedding_1) self.embedding_weight_part1_square = tf.square(self.embedding_weight_part1) self.segment_ids_1 = self.x1_index.indices[:, 0] if self.segment_ids_1.dtype != dtypes.int32:
self.segment_ids_1 = math_ops.cast(self.segment_ids_1, dtypes.int32) self.embeddings_square_sum1 = tf.math.segment_sum(
self.embedding_weight_part1_square,self.segment_ids_1) self.ess1_shape = tf.shape(self.embeddings_square_sum1)
#[batch_size,1]
self.y1_v = 0.5*tf.reduce_sum(tf.subtract(self.embedding_part1_sum_square,self.embeddings_square_sum1),1)
self.y1_v = tf.reshape(self.y1_v,[-1,1])
self.y1 = tf.add(tf.add(self.line_part1,self.y1_v),self.weight["bais"]) self.o1 = tf.sigmoid(self.y1)
self.loss = tf.losses.log_loss(labels=self.labels,predictions=self.o1)
self.error = tf.reduce_mean(self.loss)
# with tf.name_scope("loss"):
# tf.summary.scalar("loss", self.error) self.opt = tf.train.AdamOptimizer().minimize(self.error)
self.session = tf.Session()
self.init = tf.group(tf.global_variables_initializer())
if is_warm_up:
self.saver = tf.train.Saver(tf.global_variables())
self.saver.restore(self.session, self.model_path)
else:
self.session.run(self.init) def predict(self,file_name):
result_list = []
for x1_index, x1_value, true_labels in self.load_data(file_name,is_train=False):
predict1 = self.session.run([self.o1],feed_dict={
self.x1_value:x1_value,
self.x1_index:x1_index
})
# print(len(predict1))
# print(len(predict1[0]))
# print(true_labels.shape)
for i in range(len(predict1[0])):
result_list.append((true_labels[i][0],predict1[0][i]))
print(len(result_list))
with open("./data/result.txt",'w') as file1:
for tp in result_list:
file1.write(str(tp[0])+","+str(tp[1][0])+"\n") def save(self,sess,path):
saver = tf.train.Saver()
saver.save(sess,save_path=path) def restore(self,sess,path):
saver = tf.train.Saver()
saver.restore(sess,save_path=path) def train(self,train_data_file):
index=0
for x1_index,x1_value,true_labels in self.load_data(train_data_file):#ids_1,ids_2,weight_1,weight_2,
if(len(true_labels)<2):
#print("###$$$$$$ : "+str(len(true_labels)))
continue
my_o1,myerror,_=self.session.run([self.o1,self.error,self.opt],feed_dict={
self.x1_index : x1_index,
self.x1_value : x1_value,
self.labels:true_labels
})
index+=1
# if(index%1000==0):
# for i in range(len(my_o1)):
# print(str(my_o1[i])+" : "+str(true_labels[i]))
#y_t = true_labels.reshape([-1])
#y_p = np.asarray(my_o1,dtype=float).reshape([-1])
print(metrics.roc_auc_score(true_labels,my_o1)) #print(my_o1) self.save(self.session,self.model_path) self.session.close() def load_data(self,file_name,epoch=3,is_train=True):
def __parse_line(line):
tokens = line.split("#")[0].split()
assert len(tokens)>=2, "Ill-formatted line: {}".format(line)
label = float(tokens[0])
uid = tokens[1]
mid = tokens[2]
kv_pairs = [kv.split(":") for kv in tokens[3:]]
features = {k: float(v) for (k,v) in kv_pairs}
#print(type(features))
qid = uid
return qid,features,label def __encoder_line(sample):
qid = sample[0]
features = sample[1]
label = sample[2]
features_arr = []
for key in features.keys():
features_arr.append(str(key)+":"+str(features[key]))
return str(label)+" "+"qid:"+str(qid)+" "+" ".join(features_arr) def __gen_sparse_tensor(sample_list):
# 生成batch_size数据
# 根据sample_pair_list生成一个batch_size的训练样本
sample_index = 0
tensor_x1_index_ids = []
tensor_x1_index_value = [] tensor_x1_value_ids = []
tensor_x1_value_values = []
label_list = []
for sample in sample_list:
x1_feature = sample[0]
label_list.append([float(sample[1])])
tmpIndex = 0
for key in x1_feature.keys():
tensor_x1_index_ids.append([sample_index, tmpIndex])
tensor_x1_index_value.append(int(key)) tensor_x1_value_ids.append([sample_index, tmpIndex])
tensor_x1_value_values.append(float(x1_feature[key]))
tmpIndex += 1
sample_index+=1
x1_index = tf.SparseTensorValue(indices=tensor_x1_index_ids,values=tensor_x1_index_value,
dense_shape=[len(sample_list),self.feature_sizes])
x1_value = tf.SparseTensorValue(indices=tensor_x1_value_ids,values=tensor_x1_value_values,
dense_shape=[len(sample_list),self.feature_sizes])
#print("AHAHAHAHA : "+str(len(sample_list)))
return x1_index,x1_value,np.asarray(label_list,dtype=np.float32) def __gen_train_data(file_name):
new_file_name = file_name+"_train_data"
with open(file_name,'r') as filer:
with open(new_file_name,'w') as filew:
sample_list = []
now_qid = None
for l in filer:
qid, features, label = __parse_line(l)
if now_qid is None or now_qid==qid:
now_qid = qid
sample_list.append((qid,features,label))
else:
sorted_sample_list = sorted(sample_list,key=lambda x:x[2],reverse=True)
for sample in sorted_sample_list:
sample_str = __encoder_line(sample)
filew.write(sample_str+"\n")
sample_list = []
now_qid = qid
sample_list.append((qid, features, label)) return new_file_name if is_train:
new_file_name ="./data/new_final_train_data.txt" # __gen_train_data(file_name)
print("process data")
sample_list = []
while epoch>0:
epoch-=1
with open(new_file_name,'r') as filer:
for l in filer:
qid,features,label = __parse_line(l)
#print(len(sample_list))
if len(sample_list)<self.batch_size*10:
sample_list.append((features,label))
else:
random.shuffle(sample_list)
start = 0
end = len(sample_list)
while (start < end):
tmpEnd = min(end, start + self.batch_size)
sub_list = sample_list[start:tmpEnd]
x1_index, x1_value,labels = __gen_sparse_tensor(sub_list) # ids_1,ids_2,weight_1,weight_2,
if(labels.sum()<1):
start += self.batch_size
continue
yield (x1_index, x1_value,labels) # ids_1,ids_2,weight_1,weight_2,
start += self.batch_size
sample_list = []
sample_list.append((features, label))
else:
with open(file_name, 'r') as filer:
sample_list = []
for l in filer:
qid, features, label = __parse_line(l)
# print(len(sample_list))
if len(sample_list) < self.batch_size:
sample_list.append((features, label))
else:
start = 0
end = len(sample_list)
while (start < end):
tmpEnd = min(end, start + self.batch_size)
sub_list = sample_list[start:tmpEnd]
x1_index, x1_value, labels = __gen_sparse_tensor(sub_list) # ids_1,ids_2,weight_1,weight_2,
yield (x1_index, x1_value, labels) # ids_1,ids_2,weight_1,weight_2,
start += self.batch_size
sample_list = []
sample_list.append((features, label)) if __name__ =="__main__":
fm = FMmodel()
fm.build_model(is_warm_up=True)
#fm.train("./data/new_final_train_data.txt")
fm.predict("./data/test.data")

TensorFlow实现FM的更多相关文章

  1. FM-分解机模型详解

    https://blog.csdn.net/zynash2/article/details/80029969 FM论文地址:https://www.csie.ntu.edu.tw/~b97053/pa ...

  2. 100、TensorFlow实现FFM Field-awared FM模型

    ''' Created on 2017年11月15日 @author: weizhen ''' import tensorflow as tf import pandas as pd import n ...

  3. 采用ubuntu系统来安装tensorflow

    最近在学习google新开源的深度学习框架tensorflow.发现安装它的时候,需要依赖python2.7.X;我之前一直使用的linux是centos.而centos不更新了,里面的自带的pyth ...

  4. TensorFlow深度学习笔记 循环神经网络实践

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 加 ...

  5. TensorFlow入门学习(让机器/算法帮助我们作出选择)

    catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量 ...

  6. 用 tensorflow实现DeepFM

    http://www.fabwrite.com/deepfm 文章DeepFM: A Factorization-Machine based Neural Network for CTR Predic ...

  7. 『TensorFlow』卷积层、池化层详解

    一.前向计算和反向传播数学过程讲解

  8. TensorFlow实战——个性化推荐

    原创文章,转载请注明出处: http://blog.csdn.net/chengcheng1394/article/details/78820529 请安装TensorFlow1.0,Python3. ...

  9. 将libFM模型变换成tensorflow可serving的形式

    fm_model是libFM生成的模型 model.ckpt是可以tensorflow serving的模型结构 亲测输出正确. 代码: import tensorflow as tf # libFM ...

随机推荐

  1. stm32的VCC/VDD/VSS/VEE/VBAT的区别

    先看一下stm32vet6的引脚图吧 电路设计以及PCB制作中,经常碰见电源符号:VCC. VDD.VEE.VSS,他们具有什么样的关系那? 一.解释 VCC:C=circuit 表示电路的意思, 即 ...

  2. SQL基础--查询之四--集合查询

    SQL基础--查询之四--集合查询

  3. Disruptor的伪共享解决方案

    1.术语 术语 英文单词 描述 内存屏障 Memory Barriers 是一组处理器指令,用于实现对内存操作的顺序限制. In the Java Memory Model a volatile fi ...

  4. SDWebimage清空缓存

    清空缓存 - (void)clearTmpPics{ [[SDImageCache sharedImageCache] clearDisk]; [[SDImageCache sharedImageCa ...

  5. CentOS7.5基础优化与常用配置

    目录 最小化全新安装CentOS7基础优化 配置yum源 安装常用软件 关闭防火墙 关闭SELinux 优化ulimit 历史命令记录改为1万条 把命令提示符改为绿色 添加vim配置文件 添加一个普通 ...

  6. 【Cocos2dx 3.x Lua】TileMap使用

    1.编辑TileMap地图资源 2.Cocos2dx 3.x Lua中使用TileMap   Link: http://codepad.org/P0nFP1Dx  local TileMap=clas ...

  7. 概率图模型PFM——无向图

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdYAAAFPCAIAAAB/EXiGAAAgAElEQVR4nO2df4wl1XXn6/+0VuG/II ...

  8. 【转】Deep Learning(深度学习)学习笔记整理系列之(五)

    9.2.Sparse Coding稀疏编码 如果我们把输出必须和输入相等的限制放松,同时利用线性代数中基的概念,即O = a1*Φ1 + a2*Φ2+….+ an*Φn, Φi是基,ai是系数,我们可 ...

  9. httpclient接口测试完整用例以及获取信息的方法

    原文地址https://blog.csdn.net/fhaohaizi/article/details/78088075 原文地址https://blog.csdn.net/fhaohaizi/art ...

  10. mariadb10.1.13GTID实现主从复制

    ---恢复内容开始--- 环境:centos6.5       mariadb:10.1.13-MariaDB GTID:GTID是有服务器的UUID和事务序号组成的唯一事务序号 ---UUID:N ...