枚举子集&高位前缀和
最近做的题里面有这个东西,于是写一篇博客总结一下吧。
枚举子集
枚举子集就是状压的时候枚举其中的二进制位中的1的子集。直接暴力枚举二进制位时间复杂度是\(O(4^n)\),但是我们可以发现,对于每一位有以下三种状态,在枚举的子集中为1,在子集中为0且在原状态中为1,以及在原状态中为0。这样,对于1到\(2^n\)的数中,子集的总数为\(3^n\),这样,通过一些比较优秀的枚举,时间复杂度即为\(O(3^n)\)。代码如下:
for(int i=s;;i=(i-1)&s) {
//do sth...
if(!i) break;
}
其中,对于每次循环的i,枚举的即是s的子集。
枚举补集的道理和枚举子集是一样的,因为枚举补集就相当于枚举0的子集。
例题:[noip 2017] 宝藏。
高维前缀和
高维前缀和就是说把原来的数组变为其下标的子集的元素之和,高维差分就是把这个反着干,暴力的复杂度就是\(O(3^n)\)。
还有一种方法可以在\(O(n*2^n)\)中完成高维前缀和,代码如下:
for(int i=1;i<s;i<<=1)
for(int j=0;j<s;j++)
if(i&j) f[j]+=f[i^j];
高维差分大概就是把枚举顺序改改就差不多了。
例题:
HDU5765
题意大概就是给定n个点m条边的无向图,求出其中每条边在图的(最小)割上出现了几次,n<=20。图的割为一个边的集合,断开这些边后图不连通。图的(最小)割定义为不存在其他的割为他的子集。
很显然,可以用状态压缩枚举一个联通块来表示一个割,该位为1表示在联通块内。如果一个状态及其补集均为联通块,则该联通块对应了一个割。
对于所有的割做一个高维前缀和,对于每一条边,其两端点所对应的状态即为该边不在任何一个割内的答案。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int Maxn=2100000;
int t,n,m,l[Maxn],r[Maxn],g[Maxn],f[Maxn],dp[Maxn];
int main() {
scanf("%d",&t);
for(int o=1;o<=t;o++) {
printf("Case #%d:",o);
scanf("%d%d",&n,&m);
int end=(1<<n)-1,ans=0;
memset(g,0,sizeof(g));
for(int i=1;i<=m;i++) {
scanf("%d%d",&l[i],&r[i]);
g[l[i]]|=1<<r[i];
g[r[i]]|=1<<l[i];
}
dp[0]=1;
for(int i=1;i<=end;i++)
if((i&(-i))!=i)
for(int j=0,temp=1;j<n;j++,temp<<=1)
if(i&temp&&(dp[i]=dp[i^temp]&&(i&g[j])))
break;
else;
else dp[i]=1;
dp[0]=0,dp[end]=0;
for(int i=1;i<=end;i++)
f[i]=dp[i]&dp[(~i)&end],ans+=f[i];
ans/=2;
for(int i=0,temp=1;i<n;i++,temp<<=1)
for(int j=1;j<=end;j++)
if((j&temp)==0) f[j]+=f[j^temp];
for(int i=1;i<=m;i++) printf(" %d",ans-f[(1<<l[i])|(1<<r[i])]);
puts("");
}
return 0;
}
枚举子集&高位前缀和的更多相关文章
- Hihocoder 1496 寻找最大值(状态压缩 + 高位前缀和)
题目链接 Hiho 1496 设$f[i]$为二进制集合包含$i$的最大的两个数,这个东西用高维前缀和维护. 高位前缀和转移的具体方案 :枚举每一位,然后枚举每个集合,大的转移到小的. 注意合并的时 ...
- hdu_5616_Jam's balance(暴力枚举子集||母函数)
题目连接:hdu_5616_Jam's balance 题意: 给你一些砝码,和一些要被称出的重量,如果这些砝码能称出来输出YES,否则输出NO 题解:我们想想,这题求组合方式,我们这里可以直接用母函 ...
- hdu1045 Fire Net---二进制枚举子集
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1045 题目大意: 给你一幅n*n的图,再给你一些点,这些点的上下左右不能再放其他点,除非有墙('X') ...
- UVA1354-Mobile Computing(二进制枚举子集)
Problem UVA1354-Mobile Computing Accept:267 Submit:2232 Time Limit: 3000 mSec Problem Description ...
- 算法笔记-- 二进制集合枚举子集 && 求子集和 && 求父集和
枚举子集: 复杂度:O(2^k) )&s); 用sos dp求解子集和以及父集和 子集和: ; i <= k; i--) { ; mask < (<<k); mask+ ...
- uva1354 天平难题 【位枚举子集】||【huffman树】
题目链接:https://vjudge.net/contest/210334#problem/G 转载于:https://blog.csdn.net/todobe/article/details/54 ...
- UVa 11825 - Hackers' Crackdown DP, 枚举子集substa = (substa - 1)&sta 难度: 2
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- UVA 1508 - Equipment 状态压缩 枚举子集 dfs
UVA 1508 - Equipment 状态压缩 枚举子集 dfs ACM 题目地址:option=com_onlinejudge&Itemid=8&category=457& ...
- 枚举子集 Codeforces306 Div2 B
题目 分析:用二进制法去枚举子集,同时判断满足条件的子集个数加1 #include "iostream" #include "cstdio" using nam ...
随机推荐
- bootstrap之
一.字体图标 <button type="button" class="btn btn-primary btn-lg"> <span clas ...
- pyhton 函数参数,递归函数,高阶函数(一点点笔记)
'''def test(x,y): print(x) print(y)test(2,y=3)def test(*args):#参数可以是不确定的多个数,接受N个位置参数,转换成元组形式 print(a ...
- 【巷子】---vue项目打包---基本使用---【vue】
一.基本设置 二.打包 npm run build 三.github创建一个仓库 1.将文件上传至仓库 2.点击仓库设置 3.选择代码上传到master 4.点击地址即可预览 5.常用技巧 a.如果在 ...
- php安装xmlwriter遇到报错及解决方法
Q1:make的时候报' error: 'zend_class_entry' has no member named 'default_properties''错误, A:把 错误行C文件中defau ...
- linux中gdb的可视化调试
今天get到一个在linux下gdb调试程序的技巧和大家分享一下!平时我们利用gcc进行编程,进行程序调试时,观察程序的跳转等不是这么直观.都是入下的界面! 但是如果我们在编译连接时上加了-g命令生成 ...
- 构建vue项目(vue 2.x)时的一些配置问题(持续更新)
基于前文,使用vue-cli脚手架工具构建项目,并使用了webpack,那么我在项目中遇到的一些与配置相关的问题将在这里进行汇总. 1.代码检查问题 由于我们在构建项目时,使用了Eslint对我们的项 ...
- Django中URL的解析和反查
add by zhj: 如果想用reverse(namespace1:namespace2:...:namespaceN:name)反查url(注意:用reverse('polls:index')方法 ...
- cocos2d-x-3.0 window+eclipse Android Project 环境与开发新手教程
今天闲来没事,听说最新cocos2d-x 出新版3.0.所以来学习一下. 大致參考官方教程:http://www.cocos2d-x.org/wiki/How_to_Build_an_Android_ ...
- DIY自己的GIS程序(2)——局部刷新
绘制线过移动鼠标程中绘制临时线段防闪烁 参考OpenS-CAD想实现绘制线的功能.希望实现绘制线的过程,在移动线的时候没有闪烁和花屏.但是出现了问题,困扰了2天,前天熬的太晚,搞得现在精力都没有恢复. ...
- 使用递归打印二叉树的左视图 java
使用递归打印二叉树的左视图 java package com.li.jinRiTouTiao; public class PrintLeftView { static class TreeNode{ ...