10 Minutes to pandas

Concat

df = pd.DataFrame(np.random.randn(10, 4))
print(df)
# break it into pieces
pieces = [df[:3], df[3:7], df[7:]]
print(pd.concat(pieces))
# 0 1 2 3
# 0 0.879526 -1.417311 -1.309299 0.287933
# 1 -1.194092 1.237536 -0.375177 -0.622846
# 2 1.449524 1.732103 1.866323 0.327194
# 3 -0.028595 1.047751 0.629286 -0.611354
# 4 -1.237406 0.878287 1.407587 -1.637072
# 5 0.536248 1.172208 0.405543 0.245162
# 6 0.166374 1.185840 0.132388 -0.832135
# 7 0.750722 -1.188307 1.306327 1.564907
# 8 -0.755132 -1.538270 -0.173119 1.341313
# 9 -0.572171 1.808220 0.688190 -0.672612
# 0 1 2 3
# 0 0.879526 -1.417311 -1.309299 0.287933
# 1 -1.194092 1.237536 -0.375177 -0.622846
# 2 1.449524 1.732103 1.866323 0.327194
# 3 -0.028595 1.047751 0.629286 -0.611354
# 4 -1.237406 0.878287 1.407587 -1.637072
# 5 0.536248 1.172208 0.405543 0.245162
# 6 0.166374 1.185840 0.132388 -0.832135
# 7 0.750722 -1.188307 1.306327 1.564907
# 8 -0.755132 -1.538270 -0.173119 1.341313
# 9 -0.572171 1.808220 0.688190 -0.672612

Join

类似 sql 里的 join (联表)

left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
print(left)
print(right)
print(pd.merge(left, right, on='key'))
# key lval
# 0 foo 1
# 1 foo 2
# key rval
# 0 foo 4
# 1 foo 5
# key lval rval
# 0 foo 1 4
# 1 foo 1 5
# 2 foo 2 4
# 3 foo 2 5

Merge

df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
print(df)
s = df.iloc[3]
print(s)
df.append(s, ignore_index=True)
print(df)
print(df.append(s, ignore_index=True))
# A B C D
# 0 -1.744799 -0.745689 -0.066827 -0.993191
# 1 0.843984 0.902578 0.845040 1.336861
# 2 0.865214 1.151313 0.277192 -0.711557
# 3 0.917065 -0.948935 0.110977 0.047466
# 4 -1.309586 0.539592 1.956684 -0.117199
# 5 -0.431144 0.884499 -0.828626 -0.506894
# 6 -1.263993 -0.826366 1.426688 -0.434647
# 7 -0.567870 -0.086037 2.166162 -0.396294
# /
# A 0.917065
# B -0.948935
# C 0.110977
# D 0.047466
# Name: 3, dtype: float64
# /
# A B C D
# 0 -1.744799 -0.745689 -0.066827 -0.993191
# 1 0.843984 0.902578 0.845040 1.336861
# 2 0.865214 1.151313 0.277192 -0.711557
# 3 0.917065 -0.948935 0.110977 0.047466
# 4 -1.309586 0.539592 1.956684 -0.117199
# 5 -0.431144 0.884499 -0.828626 -0.506894
# 6 -1.263993 -0.826366 1.426688 -0.434647
# 7 -0.567870 -0.086037 2.166162 -0.396294
# /
# A B C D
# 0 0.673341 0.211039 0.370737 -0.533311
# 1 -0.860026 -0.850189 -0.101193 -0.208695
# 2 1.684126 0.057633 0.775963 0.571528
# 3 0.340264 -1.576842 1.251407 1.703995
# 4 0.201961 -0.016234 -1.077373 0.477445
# 5 -0.096186 -0.766024 0.702740 -0.580853
# 6 0.941851 1.474317 -0.065384 -0.779173
# 7 -0.556754 -0.535569 -0.353260 -0.839585
# 8 0.340264 -1.576842 1.251407 1.703995

Python笔记 #17# Pandas: Merge的更多相关文章

  1. Python笔记 #15# Pandas: Missing Data

    10 Minutes to pandas import pandas as pd import numpy as np import matplotlib.pyplot as plt dates = ...

  2. Python笔记 #14# Pandas: Selection

    10 Minutes to pandas import pandas as pd import numpy as np import matplotlib.pyplot as plt dates = ...

  3. Python笔记 #13# Pandas: Viewing Data

    感觉很详细:数据分析:pandas 基础 import pandas as pd import numpy as np import matplotlib.pyplot as plt dates = ...

  4. Python笔记 #18# Pandas: Grouping

    10 Minutes to pandas 引 By “group by” we are referring to a process involving one or more of the foll ...

  5. Python笔记 #16# Pandas: Operations

    10 Minutes to pandas #Stats # shift 这玩意儿有啥用??? s = pd.Series([1,5,np.nan], index=dates).shift(0) # s ...

  6. python笔记17

    1.今日内容 迭代器(3*) 生成器(4*) 装饰器(5*) 项目结构 logging模块 2.内容回顾 & 作业 2.1 内容回顾 2.1.1 函数(内置/自定义) 基本函数结构 def f ...

  7. golang学习笔记17 爬虫技术路线图,python,java,nodejs,go语言,scrapy主流框架介绍

    golang学习笔记17 爬虫技术路线图,python,java,nodejs,go语言,scrapy主流框架介绍 go语言爬虫框架:gocolly/colly,goquery,colly,chrom ...

  8. Python数据分析之pandas学习

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  9. Python数据分析库pandas基本操作

    Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...

随机推荐

  1. 更改嵌入式Linux中开机画面----左上角小企鹅图标

    一直想给嵌入式仪表加个开机LOGO,但是没有找到更换的方法.最近在网上收集了一些文章,整理一下一共自己参考.目前也还没有试过这种方法究竟是否可以.但察看Kernel源代码可以知道,Linux-2.6的 ...

  2. 《C++ Primer Plus》第9章 内存模型和名称空间 学习笔记

    C++鼓励程序员在开发程序时使用多个文件.一种有效的组织策略是,使用头文件来定义用户类型,为操纵用户类型的函数提供函数原型,并将函数定义放在一个独立的源代码文件中.头文件和源代码文件一起定义和实现了用 ...

  3. 《ASP.NET MVC4 WEB编程》学习笔记------乐观锁和悲观锁

    摘要:对数据库的并发访问一直是应用程序开发者需要面对的问题之一,一个好的解决方案不仅可以提供高的可靠性还能给应用程序的性能带来提升.下面我们来看一下Couchbase产品市场经理Don Pinto结合 ...

  4. MyEclipse10配置PyDev进行Python开发

    MyEclipse10配置PyDev进行Python开发 1.下载PyDev 2.7.1  链接如下:    http://jaist.dl.sourceforge.net/project/pydev ...

  5. mysql show processlist 命令检查mysql lock

    processlist命令的输出结果显示了有哪些线程在运行,可以帮助识别出有问题的查询语句,两种方式使用这个命令. 1. 进入mysql/bin目录下输入mysqladmin processlist; ...

  6. Go基础---->go的基础学习(四)

    这里简单的介绍一下go中的关于多线程的知识. Go中的多线程 一.go中简单的并发例子 package main import ( "fmt" "time" ) ...

  7. LeetCode——Populating Next Right Pointers in Each Node

    Description: Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; Tree ...

  8. 【BZOJ3003】LED BFS+状压DP

    [BZOJ3003]LED Description LED屏是由一个庞大的点阵小灯泡组成的,一开始每个小灯泡都不发光.每一行一共有N个小灯泡,依次标号为1~n.现在给定K个点,要求这K个点发光,其余点 ...

  9. C /C ++中结构体的定义

    c语言中结构体的定义: struct 结构体名{ 成员列表: ..... }结构体变量: 7.1.1 结构体类型变量的定义结构体类型变量的定义与其它类型的变量的定义是一样的,但由于结构体类型需要针对问 ...

  10. JQueryUI之Autocomplete

    JQueryUI之Autocomplete JQuery UI 是以 JQuery 为基础的开源 JavaScript 网页用户界面代码库.包含底层用户交互.动画.特效和可更换主题的可视控件,这些控件 ...