1、STM32Timer简介

STM32中一共有11个定时器,其中2个高级控制定时器,4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。

其中系统嘀嗒定时器是前文中所描述的SysTick,看门狗定时器以后再详细研究。今天主要是研究剩下的8个定时器。

定时器

计数器分辨率

计数器类型

预分频系数

产生DMA请求

捕获/比较通道

互补输出

TIM1

TIM8

16位

向上,向下,向上/向下

1-65536之间的任意数

可以

4

TIM2

TIM3

TIM4

TIM5

16位

向上,向下,向上/向下

1-65536之间的任意数

可以

4

没有

TIM6

TIM7

16位

向上

1-65536之间的任意数

可以

0

没有

2、普通定时器TIM2-TIM5

       其中TIM1和TIM8是能够产生3对PWM互补输出的高级定时器,常用于三相电机的驱动,时钟由APB2的输出产生。TIM2-TIM5是普通定时器,TIM6和TIM7是基本定时器,其时钟由APB1输出产生。今天就从最简单的开始学习起,也就是TIM2-TIM5普通定时器的定时功能。

2.1    时钟来源

计数器时钟可以由下列时钟源提供:

内部时钟(CK_INT)

外部时钟模式1:外部输入脚(TIx)

外部时钟模式2:外部触发输入(ETR)

内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。

由于今天的学习是最基本的定时功能,所以采用内部时钟。TIM2-TIM5的时钟不是直接来自于APB1,而是来自于输入为APB1的一个倍频器。

这个倍频器的作用是:

当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;

当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作用,定时器的时钟频率等于APB1的频率的2倍。

通过倍频器给定时器时钟的好处是:

APB1不但要给TIM2-TIM5提供时钟,还要为其他的外设提供时钟;

设置这个倍频器可以保证在其他外设使用较低时钟频率时,TIM2-TIM5仍然可以得到较高的时钟频率。

2.2    计数器模式

TIM2-TIM5可以由向上计数、向下计数、向上向下双向计数。

向上计数模式中,计数器从0计数到自动加载值(TIMx_ARR计数器内容),然后重新从0开始计数并且产生一个计数器溢出事件。在向下模式中,计数器从自动装入的值(TIMx_ARR)开始向下计数到0,然后从自动装入的值重新开始,并产生一个计数器向下溢出事件。而中央对齐模式(向上/向下计数)是计数器从0开始计数到自动装入的值-1,产生一个计数器溢出事件,然后向下计数到1并且产生一个计数器溢出事件;然后再从0开始重新计数。

2.3    编程步骤
  1. 配置系统时钟;
  2. 配置NVIC;
  3. 配置GPIO;
  4. 配置TIMER;

其中,前3项在前面的笔记中已经给出,在此就不再赘述了。第4项配置TIMER有如下配置:

  1. 利用TIM_DeInit()函数将Timer设置为默认缺省值;
  2. TIM_InternalClockConfig()选择TIMx来设置内部时钟源;
  3. TIM_Perscaler来设置预分频系数;
  4. TIM_ClockDivision来设置时钟分割;
  5. TIM_CounterMode来设置计数器模式;
  6. TIM_Period来设置自动装入的值
  7. TIM_ARRPerloadConfig()来设置是否使用预装载缓冲器
  8. TIM_ITConfig()来开启TIMx的中断

其中3 - 6 步骤中的参数由TIM_TimerBaseInitTypeDef结构体给出。

步骤 3 中的预分频系数用来确定TIMx所使用的时钟频率,具体计算方法为:CK_INT/(TIM_Perscaler+1)。CK_INT是内部时钟源的频率,是根据2.1中所描述的APB1的倍频器送出的时钟,TIM_Perscaler是用户设定的预分频系数,其值范围是从0 – 65535。

步骤 4 中的时钟分割定义的是在定时器时钟频率(CK_INT)与数字滤波器(ETR,TIx)使用的采样频率之间的分频比例。TIM_ClockDivision的参数如下表:

TIM_ClockDivision

描述

二进制值

TIM_CKD_DIV1

tDTS = Tck_tim

0x00

TIM_CKD_DIV2

tDTS = 2 * Tck_tim

0x01

TIM_CKD_DIV4

tDTS = 4 * Tck_tim

0x10

数字滤波器(ETR,TIx)是为了将ETR进来的分频后的信号滤波,保证通过信号频率不超过某个限定。

步骤 7 中需要禁止使用预装载缓冲器。当预装载缓冲器被禁止时,写入自动装入的值(TIMx_ARR)的数值会直接传送到对应的影子寄存器;如果使能预加载寄存器,则写入ARR的数值会在更新事件时,才会从预加载寄存器传送到对应的影子寄存器。

ARM中,有的逻辑寄存器在物理上对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存器,称为shadow register(影子寄存器);设计preload register和shadow register的好处是,所有真正需要起作用的寄存器(shadow register)可以在同一个时间(发生更新事件时)被更新为所对应的preload register的内容,这样可以保证多个通道的操作能够准确地同步。如果没有shadow register,或者preload register和shadow register是直通的,即软件更新preload register时,同时更新了shadow register,因为软件不可能在一个相同的时刻同时更新多个寄存器,结果造成多个通道的时序不能同步,如果再加上其它因素(例如中断),多个通道的时序关系有可能是不可预知的。

3、程序源代码

本例实现的是通过TIM2的定时功能,使得LED灯按照1s的时间间隔来闪烁

#include "stm32f10x_lib.h"

void RCC_cfg();
void TIMER_cfg();
void NVIC_cfg();
void GPIO_cfg(); int main()
{
RCC_cfg();
NVIC_cfg();
GPIO_cfg();
TIMER_cfg(); //开启定时器2
TIM_Cmd(TIM2,ENABLE); while(1);
} void RCC_cfg()
{
//定义错误状态变量
ErrorStatus HSEStartUpStatus; //将RCC寄存器重新设置为默认值
RCC_DeInit(); //打开外部高速时钟晶振
RCC_HSEConfig(RCC_HSE_ON); //等待外部高速时钟晶振工作
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if(HSEStartUpStatus == SUCCESS)
{ //设置AHB时钟(HCLK)为系统时钟
RCC_HCLKConfig(RCC_SYSCLK_Div1); //设置高速AHB时钟(APB2)为HCLK时钟
RCC_PCLK2Config(RCC_HCLK_Div1); //设置低速AHB时钟(APB1)为HCLK的2分频
RCC_PCLK1Config(RCC_HCLK_Div2); //设置FLASH代码延时
FLASH_SetLatency(FLASH_Latency_2); //使能预取指缓存
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); //使能PLL
RCC_PLLCmd(ENABLE); //等待PLL准备就绪
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //设置PLL为系统时钟源
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //判断PLL是否是系统时钟
while(RCC_GetSYSCLKSource() != 0x08);
} //允许TIM2的时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE); //允许GPIO的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
} void TIMER_cfg()
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; //重新将Timer设置为缺省值
TIM_DeInit(TIM2); //采用内部时钟给TIM2提供时钟源
TIM_InternalClockConfig(TIM2); //预分频系数为36000-1,这样计数器时钟为72MHz/36000 = 2kHz
TIM_TimeBaseStructure.TIM_Prescaler = 36000 - 1; //设置时钟分割
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置计数器模式为向上计数模式
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //设置计数溢出大小,每计2000个数就产生一个更新事件
TIM_TimeBaseStructure.TIM_Period = 2000 - 1; //将配置应用到TIM2中
TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure); //清除溢出中断标志
TIM_ClearFlag(TIM2, TIM_FLAG_Update); //禁止ARR预装载缓冲器
TIM_ARRPreloadConfig(TIM2, DISABLE); //开启TIM2的中断
TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);
} void NVIC_cfg()
{
NVIC_InitTypeDef NVIC_InitStructure; //选择中断分组1
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); //选择TIM2的中断通道
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQChannel; //抢占式中断优先级设置为0
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //响应式中断优先级设置为0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //使能中断
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
} void GPIO_cfg()
{
GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //选择引脚5 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //输出频率最大50MHz GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //带上拉电阻输出 GPIO_Init(GPIOB,&GPIO_InitStructure); } 在stm32f10x_it.c中,我们找到函数TIM2_IRQHandler(),并向其中添加代码 void TIM2_IRQHandler(void) { u8 ReadValue; //检测是否发生溢出更新事件
if(TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { //清除TIM2的中断待处理位
TIM_ClearITPendingBit(TIM2 , TIM_FLAG_Update); //将PB.5管脚输出数值写入ReadValue
ReadValue = GPIO_ReadOutputDataBit(GPIOB,GPIO_Pin_5); if(ReadValue == 0)
{
GPIO_SetBits(GPIOB,GPIO_Pin_5);
}
else
{
GPIO_ResetBits(GPIOB,GPIO_Pin_5);
}
}
}

STM32(5)——通用定时器基本定时器的更多相关文章

  1. STM32 HAL库学习系列第4篇 定时器TIM----- 开始定时器与PWM输出配置

    基本流程: 1.配置定时器 2.开启定时器 3.动态改变pwm输出,改变值  HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1); 函数总结: __HAL_TIM ...

  2. STM32之通用定时器

    广大的互联网的大家早上中午晚上..又好..没错了..我又来了..写博客不是定时的..为什么我要提写博客不是定时的呢??聪明的人又猜到我要说什么了吧.有前途.其实我还是第一次听到定时器有通用和高级之分的 ...

  3. [stm32] STM32的通用定时器TIMx系统了解

    通用定时器(TIMx) 一.TIMx简介 二.TIMx主要功能 三.TIMx功能描述 3.1 时基单元 3.2 计数器模式 3.3 时钟选择 3.4 捕获/比较通道 3.5 输入捕获模式 3.6 PW ...

  4. stm32之通用定时器TIM

    STM32系列的CPU,有多达8个定时器: 1.其中TMI1和TIM8是能够产生三对PWM互补输出的高级定时器,常用于三相电机的驱动:它们的时钟有APB2的输出产生: 2.其它6个为普通定时器,时钟由 ...

  5. Stm32之通用定时器复习

    因为毕业设计要用到PWM调光很久都没用到Stm32的定时器,有些内容已经遗忘,为了回顾复习相关内容今天开下通用定时器这一章节的数据手册. 1.时钟 通用定时器一般是TIM2~TIM5,TIM1.TIM ...

  6. 一文打尽PWM协议、PPM协议、PCM协议、SBUS协议、XBUS协议、DSM协议 | STM32的通用定时器TIM3实现PPM信号输出

    PWM.PPM.PCM.SBUS.XBUS.DSM都是接收机与其他设备通信的协议. 请注意这里不要将遥控器和接收机之间的协议混淆.遥控器和接收机之间会采用某种协议来互相沟通,这些协议往往各个厂牌各自有 ...

  7. STM32之系统滴答定时器

    一.SysTick(系统滴答定时器)概述 操作系统需要一个滴答定时器周期性产生中断,以产生系统运行的节拍.在中断服务程序里,基于优先级调度的操作系统会根据进程优先级切换任务,基于时间片轮转系统会根据时 ...

  8. STM32定时器配置(TIM1-TIM8)高级定时器+普通定时器,定时计数模式下总结

    文章结构: ——> 一.定时器基本介绍 ——> 二.普通定时器详细介绍TIM2-TIM5 ——> 三.定时器代码实例 一.定时器基本介绍  之前有用过野火的学习板上面讲解很详细,所以 ...

  9. STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时器+普通定时器,定时计数模式下总结

    文章结构: ——> 一.定时器基本介绍 ——> 二.普通定时器详细介绍TIM2-TIM5 ——> 三.定时器代码实例 一.定时器基本介绍  之前有用过野火的学习板上面讲解很详细,所以 ...

随机推荐

  1. [翻译] MGConferenceDatePicker

    MGConferenceDatePicker https://github.com/matteogobbi/MGConferenceDatePicker MGConferenceDatePicker ...

  2. mysql服务器硬件配置选择参考

    这是在网上找的一个关于如何评估一个mysql服务器的硬件需求的文章,转载以备用 5 Minute DBA – Database Server Hardware Selection Posted on  ...

  3. [EffectiveC++]item23:Prefer non-member non-friend functions to member functions

    99页 导致较大封装性的是non-member non-friend函数,因为它并不增加“能否访问class内之private成分”的函数数量.

  4. codeforces 963A Alternating Sum

    codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...

  5. Io性能分析

    一.iostat使用说明 1.命令使用方法 使用ixstat –x 1 可以每隔1秒钟采集所有设备的io信息.其中的1类似于使用“vmstat  1”后面的1. 2.命令格式说明 ―――――――――― ...

  6. jquery实现的时间轴

    代码 样式文件style.css 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ...

  7. 关于Struts2通配符无效的说明

    在struts2.3之前的版本,正常的配置就可以了,但在struts2.3版本之后,使用通配符调用方法时,内部会验证是否允许访问该方法. 1.struts2.5 为了增加安全性,在 struts.xm ...

  8. 链表推导式 【list comprehension】

    x for x in x 链表推导式 [list comprehension]链表推导式提供了一个创建链表的简单途径,无需使用 map(), filter() 以及 lambda.返回链表的定义通常要 ...

  9. Loadrunner之HTTP接口测试

    Loadrunner之HTTP接口测试 接口测试的原理是通过测试程序模拟客户端向服务器发送请求报文,服务器接收请求报文后对相应的报文做出处理然后再把应答报文发送给客户端,客户端接收应答报文这一个过程. ...

  10. HDU 2072(字符串的流式操作,学习了)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2072 单词数 Time Limit: 1000/1000 MS (Java/Others)    Me ...