Fundamental theorem of arithmetic 为什么1不是质数
https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1[3] either is a prime number itself or can be represented as the product of prime numbers and that, moreover, this representation is unique, up to (except for) the order of the factors.[4][5][6] For example,
- 1200 = 24 × 31 × 52 = 5 × 2 × 5 × 2 × 3 × 2 × 2 = ...
The theorem says two things for this example: first, that 1200 can be represented as a product of primes, and second, that no matter how this is done, there will always be exactly four 2s, one 3, two 5s, and no other primes in the product.
The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (e.g., 12 = 2 × 6 = 3 × 4).
This theorem is one of the main reasons why 1 is not considered a prime number: if 1 were prime, then factorization into primes would not be unique; for example, 2 = 2 × 1 = 2 × 1 × 1 = ...
Fundamental theorem of arithmetic 为什么1不是质数的更多相关文章
- Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- Dirichlet's Theorem on Arithmetic Progression
poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】
题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...
- poj_3006_Dirichlet's Theorem on Arithmetic Progressions_201407041030
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- (素数求解)I - Dirichlet's Theorem on Arithmetic Progressions(1.5.5)
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0
http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...
- poj 3006 Dirichlet's Theorem on Arithmetic Progressions
题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...
- POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 快筛质数
题目大意:给出一个等差数列,问这个等差数列的第n个素数是什么. 思路:这题主要考怎样筛素数,线性筛.详见代码. CODE: #include <cstdio> #include <c ...
随机推荐
- 标识符的长度应当符合“min-length && max-information”原则
标识符的长度应当符合“min-length && max-information”原则. 几十年前老 ANSI C 规定名字不准超过 6 个字符,现今的 C++/C 不再有此限制.一 ...
- java动态代码的实现以及Class的卸载 (转至http://dustin.iteye.com/blog/46393)
JavaWorld一篇题为 Add dynamic code to your application 的文章介绍了如何使用动态代理技术使普通的java源代码具有像jsp一样的动态编译效果,十分有趣. ...
- 学习:erlang的不定长数据包头部。
- 用json在java和C#之间传递base64的问题。。。
记录下..唉.... java代码: 导入这个 commons-codec-1.8.jar (下载链接: http://files.cnblogs.com/files/gaocong/jar%E5%8 ...
- jquery轻量级富文本编辑器Trumbowyg
html: <!DOCTYPE html> <html lang="zh-cn"> <head> <meta http-equiv=&qu ...
- JavaScript 事件参考手册
事件通常与函数配合使用,这样就可以通过发生的事件来驱动函数执行. 事件句柄 HTML 4.0 的新特性之一是有能力使 HTML 事件触发浏览器中的动作(action),比如当用户点击某个 HTML 元 ...
- windows上SVN图标不显示
症状1:项目左侧导航栏表不能正常显示图标 方法:windows->preferences->General->Appearance->Label Decorations ...
- 移植opencv到pcDuino
OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Pytho ...
- Ubuntu 14.04 设置Android开发环境
准备Java环境 本文仅仅安装sdk,不安装什么IDE,由于我仅仅须要命令行模式开发就可以. 首先安装openjdk 1.6.然后安装ant.这个不赘述. 下载SDK 从这里下载SDK for Lin ...
- Access数据操作-02
数据库连接 MDB文件 :Provider=Microsoft.Jet.OLEDB.4.0;Data Source=*.mdb ;Persist Security Info=False; AccDB文 ...