用于模型的训练

1.说明:

lightgbm.train(paramstrain_setnum_boost_round=100valid_sets=Nonevalid_names=Nonefobj=Nonefeval=Noneinit_model=Nonefeature_name='auto'categorical_feature='auto'early_stopping_rounds=Noneevals_result=Noneverbose_eval=Truelearning_rates=Nonekeep_training_booster=Falsecallbacks=None)

Parameters:
  • params (dict) – Parameters for training.
  • train_set (Dataset) – Data to be trained.
  • num_boost_round (intoptional (default=100)) – Number of boosting iterations.
  • valid_sets (list of Datasets or Noneoptional (default=None)) – List of data to be evaluated during training.
  • valid_names (list of string or Noneoptional (default=None)) – Names of valid_sets.
  • fobj (callable or Noneoptional (default=None)) – Customized objective function.
  • feval (callable or Noneoptional (default=None)) – Customized evaluation function. Should accept two parameters: preds, train_data. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Note: should return (eval_name, eval_result, is_higher_better) or list of such tuples. To ignore the default metric corresponding to the used objective, set the metricparameter to the string "None" in params.
  • init_model (stringBooster or Noneoptional (default=None)) – Filename of LightGBM model or Booster instance used for continue training.
  • feature_name (list of strings or 'auto'optional (default="auto")) – Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.
  • categorical_feature (list of strings or int, or 'auto'optional (default="auto")) – Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify feature_name as well). If ‘auto’ and data is pandas DataFrame, pandas categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). All negative values in categorical features will be treated as missing values.
  • early_stopping_rounds (int or Noneoptional (default=None)) – Activates early stopping. The model will train until the validation score stops improving. Validation score needs to improve at least every early_stopping_rounds round(s) to continue training. Requires at least one validation data and one metric. If there’s more than one, will check all of them. But the training data is ignored anyway. If early stopping occurs, the model will add best_iteration field.
  • evals_result (dict or Noneoptional (default=None)) –

    This dictionary used to store all evaluation results of all the items in valid_sets.

    Example

    With a valid_sets = [valid_set, train_set], valid_names = [‘eval’, ‘train’] and a params = (‘metric’:’logloss’) returns: {‘train’: {‘logloss’: [‘0.48253’, ‘0.35953’, …]}, ‘eval’: {‘logloss’: [‘0.480385’, ‘0.357756’, …]}}.

  • verbose_eval (bool or intoptional (default=True)) –

    Requires at least one validation data. If True, the eval metric on the valid set is printed at each boosting stage. If int, the eval metric on the valid set is printed at every verbose_eval boosting stage. The last boosting stage or the boosting stage found by using early_stopping_rounds is also printed.

    Example

    With verbose_eval = 4 and at least one item in evals, an evaluation metric is printed every 4 (instead of 1) boosting stages.

  • learning_rates (listcallable or Noneoptional (default=None)) – List of learning rates for each boosting round or a customized function that calculates learning_rate in terms of current number of round (e.g. yields learning rate decay).
  • keep_training_booster (booloptional (default=False)) – Whether the returned Booster will be used to keep training. If False, the returned value will be converted into _InnerPredictor before returning. You can still use _InnerPredictor as init_model for future continue training.
  • callbacks (list of callables or Noneoptional (default=None)) – List of callback functions that are applied at each iteration. See Callbacks in Python API for more information.
Returns:

booster – The trained Booster model.

Return type:

Booster

2.操作:

  用于训练你的模型,返回的是一个训练好的Booster模型

LightBGM之train的更多相关文章

  1. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  2. 清华学堂 列车调度(Train)

    列车调度(Train) Description Figure 1 shows the structure of a station for train dispatching. Figure 1 In ...

  3. Organize Your Train part II-POJ3007模拟

    Organize Your Train part II Time Limit: 1000MS Memory Limit: 65536K Description RJ Freight, a Japane ...

  4. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  5. HDU 1022 Train Problem I

    A - Train Problem I Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  6. HDU 1022 Train Problem I(栈模拟)

    传送门 Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of st ...

  7. ACM/ICPC 之 用双向链表 or 模拟栈 解“栈混洗”问题-火车调度(TSH OJ - Train)

    本篇用双向链表和模拟栈混洗过程两种解答方式具体解答“栈混洗”的应用问题 有关栈混洗的定义和解释在此篇:手记-栈与队列相关 列车调度(Train) 描述 某列车调度站的铁道联接结构如Figure 1所示 ...

  8. GDC2016 Epic Games【Bullet Train】 新风格的VR-FPS的制作方法

    追求“舒适”和“快感”的VR游戏设计方法   http://game.watch.impress.co.jp/docs/news/20160318_749016.html     [Bullet Tr ...

  9. ADF_Controller系列5_通过绑定TasksFlow创建Train

    2015-02-14 Created By BaoXinjian

随机推荐

  1. is_file,is_dir,file_exists

    is_file()和file_exists()效率比较,结果当文件存在时,is_file函数比file_exists函数速度快14倍,当文件不存在时,两者速度相当.同理,当文件目录存在时,is_dir ...

  2. Linux 查找具体的文件名称

    在大概知道文了件地址的情况下, 比如root@masterback:/# cd /usr/lib/jvm/ root@masterback:/usr/lib/jvm# ls 出来具体的文件名称

  3. 如何使用CodeSmith批量生成代码(原创系列教程)

    在上一篇我们已经用PowerDesigner创建好了需要的测试数据库,下面就可以开始用它完成批量代码生成的工作啦. 下面我会一步步的解释如何用CodeSmith实现预期的结果的,事先声明一下,在此只做 ...

  4. 我学cocos2d-x (三) Node:一切可视化对象的祖先

    在cocos2d-x中一切可视化的对象都继承自Node(如文字(label).精灵(sprite).场景(scene).布局(layer)).这是一个纯虚类.主要负责决定元素显示的位置. 由导演(Di ...

  5. zoj 1022 - Parallel Expectations

    题目:有两个指令序列,在执行时,能够执行随意指令序列的下一条指令.每条指令要一直执行到结束. 求两组指令执行结束后,每一个变量里面存储值的期望. 分析:dp,模拟.这道题算不上难题,只是算得上的麻烦题 ...

  6. 深入volley(三)自己来写volley

    https://github.com/Smalinuxer/android-SpillOver 这是我自己写的一个请求缓存框架,基于volley的,沿袭了volley的架构与设计思想,而对其进一步的封 ...

  7. POJ 1946 Cow Cycling(抽象背包, 多阶段DP)

    Description The cow bicycling team consists of N (1 <= N <= 20) cyclists. They wish to determi ...

  8. linux中的目录和文件的统计

    ls 目录 | wc -l find  ./   -type   d   |   wc   -l      //查找目录个数 find   ./   -type   f   |   wc   -l   ...

  9. Python3 requests 库

    requests 安装 使用 requests 发送 GET 请求 使用 requests 发送 POST 请求 使用 requests 维持会话 使用 requests 访问 HTTPS 使用 re ...

  10. 用Broadcast Receiver刷新数据(二)

    采用消息发布/订阅的一个很大的优点就是代码的简洁性,并且能够有效地降低消息发布者和订阅者之间的耦合度.举个例子,比如有两个界面,ActivityA和ActivityB,从ActivityA界面跳转到A ...