用于模型的训练

1.说明:

lightgbm.train(paramstrain_setnum_boost_round=100valid_sets=Nonevalid_names=Nonefobj=Nonefeval=Noneinit_model=Nonefeature_name='auto'categorical_feature='auto'early_stopping_rounds=Noneevals_result=Noneverbose_eval=Truelearning_rates=Nonekeep_training_booster=Falsecallbacks=None)

Parameters:
  • params (dict) – Parameters for training.
  • train_set (Dataset) – Data to be trained.
  • num_boost_round (intoptional (default=100)) – Number of boosting iterations.
  • valid_sets (list of Datasets or Noneoptional (default=None)) – List of data to be evaluated during training.
  • valid_names (list of string or Noneoptional (default=None)) – Names of valid_sets.
  • fobj (callable or Noneoptional (default=None)) – Customized objective function.
  • feval (callable or Noneoptional (default=None)) – Customized evaluation function. Should accept two parameters: preds, train_data. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Note: should return (eval_name, eval_result, is_higher_better) or list of such tuples. To ignore the default metric corresponding to the used objective, set the metricparameter to the string "None" in params.
  • init_model (stringBooster or Noneoptional (default=None)) – Filename of LightGBM model or Booster instance used for continue training.
  • feature_name (list of strings or 'auto'optional (default="auto")) – Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are used.
  • categorical_feature (list of strings or int, or 'auto'optional (default="auto")) – Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify feature_name as well). If ‘auto’ and data is pandas DataFrame, pandas categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). All negative values in categorical features will be treated as missing values.
  • early_stopping_rounds (int or Noneoptional (default=None)) – Activates early stopping. The model will train until the validation score stops improving. Validation score needs to improve at least every early_stopping_rounds round(s) to continue training. Requires at least one validation data and one metric. If there’s more than one, will check all of them. But the training data is ignored anyway. If early stopping occurs, the model will add best_iteration field.
  • evals_result (dict or Noneoptional (default=None)) –

    This dictionary used to store all evaluation results of all the items in valid_sets.

    Example

    With a valid_sets = [valid_set, train_set], valid_names = [‘eval’, ‘train’] and a params = (‘metric’:’logloss’) returns: {‘train’: {‘logloss’: [‘0.48253’, ‘0.35953’, …]}, ‘eval’: {‘logloss’: [‘0.480385’, ‘0.357756’, …]}}.

  • verbose_eval (bool or intoptional (default=True)) –

    Requires at least one validation data. If True, the eval metric on the valid set is printed at each boosting stage. If int, the eval metric on the valid set is printed at every verbose_eval boosting stage. The last boosting stage or the boosting stage found by using early_stopping_rounds is also printed.

    Example

    With verbose_eval = 4 and at least one item in evals, an evaluation metric is printed every 4 (instead of 1) boosting stages.

  • learning_rates (listcallable or Noneoptional (default=None)) – List of learning rates for each boosting round or a customized function that calculates learning_rate in terms of current number of round (e.g. yields learning rate decay).
  • keep_training_booster (booloptional (default=False)) – Whether the returned Booster will be used to keep training. If False, the returned value will be converted into _InnerPredictor before returning. You can still use _InnerPredictor as init_model for future continue training.
  • callbacks (list of callables or Noneoptional (default=None)) – List of callback functions that are applied at each iteration. See Callbacks in Python API for more information.
Returns:

booster – The trained Booster model.

Return type:

Booster

2.操作:

  用于训练你的模型,返回的是一个训练好的Booster模型

LightBGM之train的更多相关文章

  1. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  2. 清华学堂 列车调度(Train)

    列车调度(Train) Description Figure 1 shows the structure of a station for train dispatching. Figure 1 In ...

  3. Organize Your Train part II-POJ3007模拟

    Organize Your Train part II Time Limit: 1000MS Memory Limit: 65536K Description RJ Freight, a Japane ...

  4. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  5. HDU 1022 Train Problem I

    A - Train Problem I Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  6. HDU 1022 Train Problem I(栈模拟)

    传送门 Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of st ...

  7. ACM/ICPC 之 用双向链表 or 模拟栈 解“栈混洗”问题-火车调度(TSH OJ - Train)

    本篇用双向链表和模拟栈混洗过程两种解答方式具体解答“栈混洗”的应用问题 有关栈混洗的定义和解释在此篇:手记-栈与队列相关 列车调度(Train) 描述 某列车调度站的铁道联接结构如Figure 1所示 ...

  8. GDC2016 Epic Games【Bullet Train】 新风格的VR-FPS的制作方法

    追求“舒适”和“快感”的VR游戏设计方法   http://game.watch.impress.co.jp/docs/news/20160318_749016.html     [Bullet Tr ...

  9. ADF_Controller系列5_通过绑定TasksFlow创建Train

    2015-02-14 Created By BaoXinjian

随机推荐

  1. e661. 确定图像中是否有透明像素

    // This method returns true if the specified image has transparent pixels public static boolean hasA ...

  2. 网络协议之socks---子网和公网的穿透

    http://www.cnblogs.com/imyijie/p/4595889.html

  3. gsoap 学习 1-如何使用

    新年伊始,想把onvif和gsoap boa这三个东西学习下,并作下笔记,当然为了省时间,我昨天下午看了一个下午的gsaop官网pdf感触良多,也做了小测试,废话少说,一下也有一些是摘自网友博客,大部 ...

  4. pyqt的多Button的点击事件的槽函数的区分发送signal的按钮。

    关键函数:QPushButton的setObjectName()/objectName() 个人注解:按功能或者区域,将按钮的点击事件绑定的不同的槽函数上. from PyQt5.QtWidgets ...

  5. OpenGL介绍

    OpenGL是一个开放的三维图形软件包,它独立于窗口系统和操作系统,以它为基础开发的应用程序可以十分方便地在各种平台间移植:OpenGL可以与Visual C++紧密接口,便于实现机械手的有关计算和图 ...

  6. Visual Basic的未来之路

        Green首先列出了当时使用VB进行开发的四个基础指导原则:         1.VB和C#共享的通用IDE和平台构建块.         2.共享的“多范式.面向对象.命令式.强类型等”语言 ...

  7. 【RF库测试】关键字get time

    *** Test Cases ***Timestamp ${time} GET TIME ${secs} GET TIME epoch ${year} GET TIME return year ${y ...

  8. Linux的网卡相关

    检测linux下网卡是否正常 1.dmesg | grep eth 如果出现以下  eth0: link up 说明是网卡正常的 eth0: registered as PCnet/PCI II 79 ...

  9. m2014-architecture-webserver->百万记录级mysql数据库及Discuz!论坛优化

    作者:shunz,出处:http://shunz.net/2008/06/mysql_discuz_.html 最近,帮一个朋友优化一个拥有20万主题,100万帖子,3万多会员,平均在线人数2000人 ...

  10. 基于Cocos2d-x学习OpenGL ES 2.0系列——纹理贴图(6)

    在上一篇文章中,我们介绍了如何绘制一个立方体,里面涉及的知识点有VBO(Vertex Buffer Object).IBO(Index Buffer Object)和MVP(Modile-View-P ...