CNN中卷积层的计算细节
原文链接: https://zhuanlan.zhihu.com/p/29119239
卷积层尺寸的计算原理
- 输入矩阵格式:四个维度,依次为:样本数、图像高度、图像宽度、图像通道数
- 输出矩阵格式:与输出矩阵的维度顺序和含义相同,但是后三个维度(图像高度、图像宽度、图像通道数)的尺寸发生变化。
- 权重矩阵(卷积核)格式:同样是四个维度,但维度的含义与上面两者都不同,为:卷积核高度、卷积核宽度、输入通道数、输出通道数(卷积核个数)
- 输入矩阵、权重矩阵、输出矩阵这三者之间的相互决定关系
- 卷积核的输入通道数(in depth)由输入矩阵的通道数所决定。(红色标注)
- 输出矩阵的通道数(out depth)由卷积核的输出通道数所决定。(绿色标注)
- 输出矩阵的高度和宽度(height, width)这两个维度的尺寸由输入矩阵、卷积核、扫描方式所共同决定。计算公式如下。(蓝色标注)
* 注:以下计算演示均省略掉了 Bias ,严格来说其实每个卷积核都还有一个 Bias 参数。
标准卷积计算举例
以 AlexNet 模型的第一个卷积层为例,
- 输入图片的尺寸统一为 227 x 227 x 3 (高度 x 宽度 x 颜色通道数),
- 本层一共具有96个卷积核,
- 每个卷积核的尺寸都是 11 x 11 x 3。
- 已知 stride = 4, padding = 0,
- 假设 batch_size = 256,
- 则输出矩阵的高度/宽度为 (227 - 11) / 4 + 1 = 55
1 x 1 卷积计算举例
后期 GoogLeNet、ResNet 等经典模型中普遍使用一个像素大小的卷积核作为降低参数复杂度的手段。
从下面的运算可以看到,其实 1 x 1 卷积没有什么神秘的,其作用就是将输入矩阵的通道数量缩减后输出(512 降为 32),并保持它在宽度和高度维度上的尺寸(227 x 227)。
全连接层计算举例
实际上,全连接层也可以被视为是一种极端情况的卷积层,其卷积核尺寸就是输入矩阵尺寸,因此输出矩阵的高度和宽度尺寸都是1。
总结下来,其实只需要认识到,虽然输入的每一张图像本身具有三个维度,但是对于卷积核来讲依然只是一个一维向量。卷积核做的,其实就是与感受野范围内的像素点进行点积(而不是矩阵乘法)。
附:TensorFlow 中卷积层的简单实现
def conv_layer(x, out_channel, k_size, stride, padding):
in_channel = x.shape[3].value
w = tf.Variable(tf.truncated_normal([k_size, k_size, in_channel, out_channel], mean=0, stddev=stddev))
b = tf.Variable(tf.zeros(out_channel))
y = tf.nn.conv2d(x, filter=w, strides=[1, stride, stride, 1], padding=padding)
y = tf.nn.bias_add(y, b)
y = tf.nn.relu(y)
return x
- 输入 x:[batch, height, width, in_channel]
- 权重 w:[height, width, in_channel, out_channel]
- 输出 y:[batch, height, width, out_channel]
CNN中卷积层的计算细节的更多相关文章
- 由浅入深:CNN中卷积层与转置卷积层的关系
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...
- CNN中卷积层 池化层反向传播
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...
- TensorFlow与caffe中卷积层feature map大小计算
刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同 ...
- caffe中卷积层和pooling层计算下一层的特征map的大小
pool层,其中ceil是向上取整函数 卷积层:
- CNN中卷积的意义
在传统的神经网络中,比如多层感知机(MLP),其输入通常是一个特征向量.需要人工设计特征,然后将用这些特征计算的值组成特征向量.在过去几十年的经验来看,人工找的特征并不总是好用.有时多了,有时少了,有 ...
- CNN中感受野大小的计算
1 感受野的概念 从直观上讲,感受野就是视觉感受区域的大小.在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小. 2 感受野 ...
- 深度学习中卷积层和pooling层的输出计算公式(转)
原文链接:https://blog.csdn.net/yepeng_xinxian/article/details/82380707 1.卷积层的输出计算公式class torch.nn.Conv2d ...
- Python3 CNN中卷积和池化的实现--限制为二维输入
# -*- coding: utf-8 -*- """ Created on Wed Jan 31 14:10:03 2018 @author: markli " ...
- CNN:转置卷积输出分辨率计算
上一篇介绍了卷积的输出分辨率计算,现在这一篇就来写下转置卷积的分辨率计算.转置卷积(Transposed convolution),转置卷积也有叫反卷积(deconvolution)或者fractio ...
随机推荐
- Mybatis的CRUD案例
一.Mybatis增删改查案例 上一节<Mybatis入门和简单Demo>讲了如何Mybatis的由来,工作流程和一个简单的插入案例,本节主要继上一讲完整的展示Mybatis的CRUD操作 ...
- 数据挖掘-聚类分析(Python实现K-Means算法)
概念: 聚类分析(cluster analysis ):是一组将研究对象分为相对同质的群组(clusters)的统计分析技术.聚类分析也叫分类分析,或者数值分类.聚类的输入是一组未被标记的样本,聚类根 ...
- Swagger生成的接口需要权限验证的处理方法
通常开发API的时候需要对接口进行权限验证,而我们在使用Swagger生成接口文档界面的时候,直接调用需要权限验证的接口会提示"当前用户没有登陆" 为了解决此问题,我们需要更改一下 ...
- Smarty模板变量调节器
Smarty模板变量调节器用法 在smarty里面,怎么修饰文本和变量呢?当然,你可以通过php函数处理文本,然后再通过assign()方法分配到模板,其实smarty提供了变量调节器能够很容易的处理 ...
- 文件下载—SSM框架文件下载
1.准备上传下载的api组件 <dependency> <groupId>commons-io</groupId> <artifactId>common ...
- java基础类型中的char和byte的辨析及Unicode编码和UTF-8的区别
在平常工作中使用到char和byte的场景不多,但是如果项目中使用到IO流操作时,则必定会涉及到这两个类型,下面让我们一起来回顾一下这两个类型吧. char和byte的对比 byte byte 字节, ...
- Linux_Chrome出现Adobe Flash Player is out of date解决方法
在安装Google的Chrome后都有出现Adobe Flash Player is out of date的问题. Chrome浏览器用的播放器插件是PepperFlashPlayer.而且是内置的 ...
- 图解Kerberos认证工作原理
本文是我在看了这篇英文说明之后的总结 https://technet.microsoft.com/zh-cn/library/cc961976.aspx 是总结,不是翻译,所以是我看后按自己的理解写的 ...
- supervisor管理ELK进程
1.配置supervisor #更新epel yum install epel-release yum install python-pip pip install supervisor -p /et ...
- RocEDU.阅读.写作《苏菲的世界》书摘(七)
* 康德认为"事物本身"和"我眼中的事物"是不一样的.这点很重要.我们永远无法确知事物"本来"的面貌.我们所知道的只是我们眼中"看 ...