paper url: https://arxiv.org/abs/1811.08883

当在数据量足够和训练iterations足够的情况下,ImageNet pretrain不会对最后的性能有帮助,但是会加速收敛(需要用GN或SyncBN);
当数据量不够的情况下, 模型是需要在 ImageNet 上预训练的

  1. training from scratch 是可行的, 但是需要合适的 normalization(如GN)和更多的迭代。
  2. 根据数据量等情况,training from scratch 可以不比 fine-tune 的效果差。
  3. fine-tune 的方式还是收敛速度快很多。
  4. 除非, 目标数据集规模很小, fine-tune 是没有办法减少过拟合的; fine-tune 时候, 需要让大的 lr迭代次数更多,如果小的lr迭代次数过多的话,很容易过拟合。
  5. 对于位置敏感的任务,在分类任务上预训练的模型进行 fine-tune 的效果会变小; 比如需要对目标精确定位的任务,在 ImageNet 上预训练的模型上 fine-tune 没效果,比如 keypoint 的任务。

rethinking imageNet pre-training的更多相关文章

  1. 对Rethinking ImageNet Pre-training的理解

    Kaiming He的这篇论文提出了一个新问题,在目标检测.实例分割和人体关键点检测等领域,预训练的模型是否真的起了作用?通过实验,得出结论:迭代次数较少时,使用预训练模型效果更好:但是只要迭代次数充 ...

  2. ICCV 2019|70 篇论文抢先读,含目标检测/自动驾驶/GCN/等(提供PDF下载)

    虽然ICCV2019已经公布了接收ID名单,但是具体的论文都还没放出来,为了让大家更快得看论文,我们汇总了目前已经公布的大部分ICCV2019 论文,并组织了ICCV2019论文汇总开源项目(http ...

  3. 转:谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版

    [转:http://blog.csdn.net/buaalei/article/details/46344675] 大家好!我是贾扬清,目前在Google Brain,今天有幸受雷鸣师兄邀请来和大家聊 ...

  4. 贾扬清分享_深度学习框架caffe

    Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...

  5. 『计算机视觉』物体检测之RefineDet系列

    Two Stage 的精度优势 二阶段的分类:二步法的第一步在分类时,正负样本是极不平衡的,导致分类器训练比较困难,这也是一步法效果不如二步法的原因之一,也是focal loss的motivation ...

  6. Batch_Size对网络训练结果的影响

    最近在跑一些网络时发现,训练完的网络在测试集上的效果总是会受Batch_Size 大小的影响.这种现象跟以往自己所想象的有些出入,于是出于好奇,各种搜博客,大致得出了自己想要的答案,现写一篇博客记录一 ...

  7. 『计算机视觉』Mask-RCNN_项目文档翻译

    基础介绍 项目地址:Mask_RCNN 语言框架:Python 3, Keras, and TensorFlow Python 3.4, TensorFlow 1.3, Keras 2.0.8 其他依 ...

  8. 谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版

    谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版 一.讲座正文: 大家好!我是贾扬清237,目前在Google Brain83,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe60.没有太多准备, ...

  9. Google大脑科学家贾杨清(Caffe缔造者)-微信讲座

    Google大脑科学家贾杨清(Caffe缔造者)-微信讲座 机器学习Caffe 贾扬清 caffe   一.讲座正文: 大家好!我是贾扬清178,目前在Google Brain69,今天有幸受雷鸣师兄 ...

随机推荐

  1. Redis的常见用法

    Redis redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorte ...

  2. EasyUI的Datagrid鼠标悬停显示单元格内容

    功能描述:table鼠标悬停显示单元格内容 1.js函数 function hoveringShow(value) { return "<span title='" + va ...

  3. DNS预解析prefetch

    前面的话 本文将详细介绍DNS预解析prefetch的主要内容 概述 DNS(Domain Name System, 域名系统),是域名和IP地址相互映射的一个分布式数据库.DNS 查询就是将域名转换 ...

  4. Python TypeError: not all arguments converted during string formatting ——元组tuple(a)和(a,)的区别

    今天写程序,想输出一个array的shape,原程序为: print('shape of testUImatrix:%s\nStart to make testUImatrix...'%(testui ...

  5. 关于String的一些基础小题目

    需求一:从键盘输入一串字符串,统计数字,字母,空格,其它字符的个数 import java.util.Scanner; public class Q1 { public static void mai ...

  6. 【长期更新】迈向现代化的 .Net 配置指北

    1. 欢呼 .NET Standard 时代 我现在已不大提 .Net Core,对于我来说,未来的开发将是基于 .NET Standard,不仅仅是 面向未来 ,也是 面向过去:不只是 .Net C ...

  7. sips 命令(iMac 下系统自带)

    2. sips 2.1 -Z 指定最大宽高 //等比例缩放 scaleFill $ sips -Z 300 hgl.png $ for i in *.jpg;do sips -Z 300 " ...

  8. mac 重装系统

    Mac打算送人,现在退出自己的帐号恢复出厂设置. 协助工具下载:链接:https://pan.baidu.com/s/1vHt-Mk4otawEGidyz_WW2g 提取码:9ax6 用transma ...

  9. 洛谷P1066 2^k进制数(题解)(递推版)

    https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...

  10. 深度学习二、CNN(卷积神经网络)概念及理论

    一.卷积神经网络(CNN) 1.常见的CNN结构有:LeNet-5.AlexNet.ZFNet.VGGNet.ResNet等.目前效率最高的是ResNet. 2.主要的层次: 数据输入层:Input ...