ID3、C4.5、CART决策树介绍
决策树是一类常见的机器学习方法,它可以实现分类和回归任务。决策树同时也是随机森林的基本组成部分,后者是现今最强大的机器学习算法之一。
1. 简单了解决策树
举个例子,我们要对”这是好瓜吗?”这样的问题进行决策时,通常会进行一系列的判断:我们先看”它是什么颜色的”,如果是”青绿色”, 我们再看”它的根蒂是什么形态”,如果是”蜷缩”,我们再判断”它敲起来是什么声音”,最后我们判断它是一个好瓜。决策过程如下图所示。
决策过程的最终结论对应了我们所希望的判定结果,”是”或”不是”好瓜。上图就是一个简单的决策树。
那么我们就会有疑问了,为什么这棵树是这样划分的呢?一定要以”色泽”作为根节点吗?对此,就需要划分选择最优的属性。
2. 划分选择
一般而言,我们希望决策树的分支节点所包含的样本尽可能属于同一类别,即结点的”纯度”越高越好。常用的纯度有”信息增益”、 ”信息增益率”、 ”基尼指数”或”均方差”,分别对应ID3、C4.5、CART。
3. ID3决策树
3.1 信息熵
信息熵是度量样本集合纯度最常用的一种指标。假定当前样本集合 中第类样本所占的比例为,则D的信息熵定义为:
其中pi是数据集D中任意样本属于类Ci的概率,用 估计。
Info(D)的值越小,D的纯度越高。
3.2 条件熵
当前样本集中,考虑到不同的分支结点所包含的样本数不同,可以赋予不同的权重,样本数越多的分支结点对应的影响越大,即为条件熵,定义如下:
其中,充当第j个划分的权重。
3.3 信息增益
信息增益 = 信息熵 – 条件熵,即
当信息熵一定时,条件熵越小(即纯度越大),信息增益越大,选择信息增益最大的属性作为最优划分属性。
3.4 算法过程
输入:训练集 ;
属性集
(1) 生成结点node;
训练集:
属性集:
(2) 如果数据集D都属于同一个类C,那么将node标记为C类叶子结点,结束;
(3) 如果数据集D中没有其他属性可以考虑,那么按照少数服从多数的原则,在node上标出数据集D中样本数最多的类,结束;
(4) 否则,根据信息增益,选择一个信息增益最大的属性作为结点node的一个分支。
(5) 结点属性选定后,对于该属性中的每个值:
a) 每个值生成一个分支,并将数据集中与该分支有关的数据收集形成分支结点的样本子集Dv,删除结点属性那一栏;
b) 如果Dv非空,则转(1),运用以上算法从该结点建立子树。
4. C4.5决策树
信息增益准则偏向于可取值数目较多的属性(例如:将”编号”作为一个划分属性,那么每个”编号”仅包含一个样本,分支结点的纯度最大,条件熵为0,信息增益=信息熵,信息增益达到最大值),为减少这种偏好带来的不利影响,使用了”信息增益率”来选择最优划分属性。
4.1 信息增益率
信息增益率是在信息增益的基础上,增加了属性A的信息熵。
信息增益率的定义如下:
其中
该值表示数据集D按属性A分裂的v个划分产生的信息。
注意:信息增益率偏向于可取值数目较少的属性,所以C4.5算法不是直接选择增益率最大的划分属性,而是先从划分属性中找出信息增益高于平均水平的属性,再从中选择信息增益率最高的属性。
4.2 算法过程
输入:
训练集
属性集
(1) 生成结点node;
(2) 如果数据集D都属于同一个类C,那么将node标记为C类叶子结点,结束;
(3) 如果数据集D中没有其他属性可以考虑,那么按照少数服从多数的原则,在node上标出数据集D中样本数最多的类,结束;
(4) 否则,根据信息增益率,先从划分属性中找出信息增益高于平均水平的属性,再从中选择信息增益率最高的属性。作为结点node的一个分支。
(5) 结点属性选定后,对于该属性中的每个值:
a) 每个值生成一个分支,并将数据集中与该分支有关的数据收集形成分支结点的样本子集Dv,删除结点属性那一栏;
b) 如果Dv非空,则转(1),运用以上算法从该结点建立子树。
5. CART决策树
CART树又名分类回归树,可用于分类和回归。
5.1 基尼指数
分类时数据集的纯度可以用基尼值来度量:
纯度越大,基尼值越小。
属性A的基尼指数定义如下:
选择基尼指数最小的属性作为最优划分属性。
5.2 均方差
回归时数据集D的纯度可以用均方差来度量:
其中
选择均方差最小的属性作为最优划分属性。
5.3 算法过程
同上,第(4)步中计算”信息增益率”改为”基尼指数”或”均方差”即可。
6. 算法比较
算法 |
支持模型 |
树结构 |
特征选择 |
连续值处理 |
缺失值处理 |
剪枝 |
特征属性多次使用 |
ID3 |
分类 |
多叉树 |
信息增益 |
不支持 |
不支持 |
不支持 |
不支持 |
C4.5 |
分类 |
多叉树 |
信息增益率 |
支持 |
支持 |
支持 |
不支持 |
CART |
分类、回归 |
二叉树 |
基尼系数、均方差 |
支持 |
支持 |
支持 |
支持 |
7. 决策树优缺点
优点:
- 推理过程容易理解,计算简单,可解释性强。
- 比较适合处理有缺失属性的样本。
- 可自动忽略目标变量没有贡献的属性变量,也为判断属性变量的重要性,减少变量的数目提供参考。
缺点:
- 容易造成过拟合,需要采用剪枝操作。
- 忽略了数据之间的相关性。
- 对于各类别样本数量不一致的数据,信息增益偏向于那些更多数值的特征。
8. 决策树适用情景
- 决策树能够生成清晰的基于特征选择不同预测结果的树状结构,数据分析师希望更好的理解手上的数据的时候可以使用。
- 决策树更大的作用是作为一些更有用的算法的基石。例如:随机森林、AdaBoost、GBDT。
以上为决策树的介绍说明,后续讲解C4.5和CART树的连续值处理、缺失值处理、剪枝,敬请期待!
ID3、C4.5、CART决策树介绍的更多相关文章
- ID3\C4.5\CART
目录 树模型原理 ID3 C4.5 CART 分类树 回归树 树创建 ID3.C4.5 多叉树 CART分类树(二叉) CART回归树 ID3 C4.5 CART 特征选择 信息增益 信息增益比 基尼 ...
- 决策树(ID3,C4.5,CART)原理以及实现
决策树 决策树是一种基本的分类和回归方法.决策树顾名思义,模型可以表示为树型结构,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布. [图片上传失败...(image ...
- 决策树模型 ID3/C4.5/CART算法比较
决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完 ...
- 机器学习算法总结(二)——决策树(ID3, C4.5, CART)
决策树是既可以作为分类算法,又可以作为回归算法,而且在经常被用作为集成算法中的基学习器.决策树是一种很古老的算法,也是很好理解的一种算法,构建决策树的过程本质上是一个递归的过程,采用if-then的规 ...
- 决策树 ID3 C4.5 CART(未完)
1.决策树 :监督学习 决策树是一种依托决策而建立起来的一种树. 在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象,树中的每一个分叉路径代表某 ...
- 21.决策树(ID3/C4.5/CART)
总览 算法 功能 树结构 特征选择 连续值处理 缺失值处理 剪枝 ID3 分类 多叉树 信息增益 不支持 不支持 不支持 C4.5 分类 多叉树 信息增益比 支持 ...
- 机器学习相关知识整理系列之一:决策树算法原理及剪枝(ID3,C4.5,CART)
决策树是一种基本的分类与回归方法.分类决策树是一种描述对实例进行分类的树形结构,决策树由结点和有向边组成.结点由两种类型,内部结点表示一个特征或属性,叶结点表示一个类. 1. 基础知识 熵 在信息学和 ...
- ID3、C4.5和CART决策树对比
ID3决策树:利用信息增益来划分节点 信息熵是度量样本集合纯度最常用的一种指标.假设样本集合D中第k类样本所占的比重为pk,那么信息熵的计算则为下面的计算方式 当这个Ent(D)的值越小,说明样本集合 ...
- sklearn CART决策树分类
sklearn CART决策树分类 决策树是一种常用的机器学习方法,可以用于分类和回归.同时,决策树的训练结果非常容易理解,而且对于数据预处理的要求也不是很高. 理论部分 比较经典的决策树是ID3.C ...
随机推荐
- docker容器启动haproxy
1.在本地新增haproxy.cfg文件(本次haproxy.cfg文件路径为/root/haproxy.cfg),内容如下: #---------------- # Global settings ...
- P1462 通往奥格瑞玛的道路
P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...
- python的排序方式
""" 冒泡排序: 冒泡排序的思想: 每次比较两个相邻的元素, 如果他们的顺序错误就把他们交换位置 比如有五个数: 12, 35, 99, 18, 76, 从大到小排序, ...
- 【AGC030D】Inversion Sum DP
题目大意 有一个序列 \(a_1,a_2,\ldots,a_n\),有 \(q\) 次操作,每次操作给你两个数 \(x,y\),你可以交换 \(a_x,a_y\),或者什么都不做. 问你所有 \(2^ ...
- vue stylus 格式化问题
IDE是vscode 安装了.vetur插件 由于stylus可以仅用缩进不用写大括号之类的,所以十分方便, 但有个问题,按alt shift F 格式化时,vetur这个插件会默认添加上正常css的 ...
- 洛谷P5155 [USACO18DEC]Balance Beam(期望,凸包)
你以为它是一个期望dp,其实它是一个凸包哒! 设平衡木长度为\(L\),把向右走平衡木那个式子写一下: \[dp[i]=\frac{dp[i+1]+dp[i-1]}{2}\] 然后会发现这是一个等差数 ...
- k8s list
https://mp.weixin.qq.com/s?__biz=MzI5ODQ2MzI3NQ==&mid=2247486341&idx=1&sn=53b0c92deb0cb8 ...
- spring IOC与AOP
Spring IOC容器 spring IOC 容器有两种,分别是 BeanFactory 容器和 ApplicationContext 容器. BeanFactory如下: /*第一步,利用Clas ...
- 安卓上用Termux终端模拟器安装MC Forge 1.12.2服务器!
本教程重度新手向,大神勿喷(因为楼主本人就是Linux小白)! 为了让教程合乎简约至上的原则,将不在基本操作上赘述 测试环境:酷派大神Note3 Android5.0 2GBRAM 未root 截图是 ...
- CSS上下左右居中的几种方法
1.absolute,margin: auto .container { position: relative; } .content { position: absolute; margin: au ...