ST表的原理及其实现

ST表类似树状数组,线段树这两种算法,是一种用于解决RMQ(Range Minimum/Maximum Query,即区间最值查询)问题的离线算法

与线段树相比,预处理复杂度同为O(nlogn),查询时间上,ST表为O(1),线段树为O(nlogn)

st表的主体是一个二维数组st[i][j],表示需要查询的数组的从下标i到下标i+2^j - 1的最值,这里以最小值为例

预处理函数:

int a[];//原始输入数组
int st[][];//st表 void init(int n)
{
for (int i = ; i < n; i++)
st[i][] = a[i]; for (int j = ; ( << j) <= n; j++)
{
for (int i = ; i + ( << j) - < n; i++)
st[i][j] = min(st[i][j - ],st[i + ( << (j - ))][j - ]);
}
}

这里首先把从0~n-1的2^0部分进行覆盖,再往下继承

继承这里也很好理解,我们以一个长度为5的数组[5,1,2,3,4]为例

2^0部分覆盖过去自然是5,4,3,2,1

2^1部分的长度为4,从0一直到3,因为从下标为4开始后面只有他自己

st[0][1]是下标为0~1的最小值,自然也就是st[0][0]和st[1][0]的最值

以此往下类推我们可以得出结论:

st[i][j] = min(st[i][j - 1],st[i + 2^(j - 1))][j - 1])

到这里初始化就完成了,注意下标不要越界,如果你对为什么这么处理有困惑的话,请继续看查询

查询函数这里不太好理解

初始化时,每一个状态对应的区间长度都为2^j,由于给出的查询区间长度不一定恰好为2^j,

所以我们要引出一个定理:2^log(a)>a/2 。

因为log(a)表示小于等于a的2的最大几次方。 
比如说log(4)=2,log(5)=2,log(6)=2,log(7)=2,log(8)=3,log(9)=3……. 
那么我们要查询x到y的最小值。 
设len=y-x+1,t=log(len) 
根据上面的定理:2^t>len/2 
从位置上来说,x+2^t越过了x到y的中间! 
因为位置过了一半 
所以x到y的最小值可以表示为min(从x往后2^t的最小值,从y往前2^t的最小值) 
前面的状态表示为mn[t][x] 
设后面(从y往前2^t的最小值)的初始位置是k, 
那么k+2^t-1=y,所以k=y-2^t+1 
所以后面的状态表示为mn[t][y-2^t+1] 
所以x到y的最小值表示为min(mn[t][x],mn[t][y-2^t+1]),所以查询时间复杂度是O(1)

int search(int l, int r)
{
int k = (int)(log((double)(r - l + )) / log(2.0));
return min(st[l][k],st[r - ( << k) + ][k]);
}

示例程序:

#include <iostream>
#include <algorithm> using namespace std; int a[];//原始输入数组
int st[][];//st表 void init(int n)
{
for (int i = ; i < n; i++)
st[i][] = a[i]; for (int i = ; ( << i) <= n; i++)
{
for (int j = ; j + ( << i) - < n; j++)
st[j][i] = min(st[j][i - ],st[j + ( << (i - ))][i - ]);
}
} int search(int l, int r)
{
int k = (int)(log((double)(r - l + )) / log(2.0));
return min(st[l][k],st[r - ( << k) + ][k]);
} int main()
{
int n,m;
while (cin >> n >> m)
{
for (int i = ; i < n; i++)
cin >> a[i]; init(n); while (m--)
{
int l, r;
cin >> l >> r;
cout << search(l,r) << endl;;
}
}
return ;
}
文章内容摘抄于:
ST表的原理及其实现 - 真是啰嗦 - 博客园
ST表算法详解

ST表的更多相关文章

  1. POJ3693 Maximum repetition substring [后缀数组 ST表]

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9458   Acc ...

  2. 【BZOJ-2006】超级钢琴 ST表 + 堆 (一类经典问题)

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2473  Solved: 1211[Submit][Statu ...

  3. 【BZOJ-3956】Count ST表 + 单调栈

    3956: Count Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 173  Solved: 99[Submit][Status][Discuss] ...

  4. 【BZOJ-4569】萌萌哒 ST表 + 并查集

    4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 459  Solved: 209[Submit][Status] ...

  5. 【BZOJ-4310】跳蚤 后缀数组 + ST表 + 二分

    4310: 跳蚤 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 180  Solved: 83[Submit][Status][Discuss] De ...

  6. HDU5726 GCD(二分 + ST表)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Give you a sequence of N(N≤100, ...

  7. Hdu 5289-Assignment 贪心,ST表

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=5289 Assignment Time Limit: 4000/2000 MS (Java/Others) ...

  8. Bzoj 2006: [NOI2010]超级钢琴 堆,ST表

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2222  Solved: 1082[Submit][Statu ...

  9. ST表poj3264

      /* ST表多次查询区间最小值 设 g[j][i] 表示从第 i 个数到第 i + 2 ^ j - 1 个数之间的最小值 类似DP的说 ans[i][j]=min (ans[i][mid],ans ...

  10. COJ 1003 WZJ的数据结构(三)ST表

    WZJ的数据结构(三) 难度级别:B: 运行时间限制:3000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 请你设计一个数据结构,完成以下功能: 给定一个大小为N的 ...

随机推荐

  1. C# 设置Excel条件格式(二)

    上一篇文章中介绍了关于设置Excel条件格式,包括基于单元格值.自定义公式等应用条件格式.应用数据条条件类型格式.删除条件格式等内容.在本篇文章中将继续介绍C# 设置条件格式的方法. 要点概述: 1. ...

  2. Android破解学习之路(十二)—— GP录像汉化过程及添加布局

    前言 最近闲着发慌,想起了很久之前就想汉化的一款录像APP,APP大小不到1MB,但是好用,本期就给大家带来汉化的基本步骤以及如何在APP中添加我们汉化的信息 汉化思路 查找关键字 关键字挺好找的,由 ...

  3. myeclipse的debug模式启动不了,但run模式可以启动

    一.问题 在用myeclipse的开发web项目时,经常会打断点,然后利用debug模式启动.但是,今天debug模式启动不了,run模式又可以.这给调试带来了很大的麻烦. 二.解决办法 1.点击de ...

  4. HTTPS 站点的性能优化

    HTTPS 站中的几大难题 性能,包括: HTTPS需要多次握手,因此网络耗时变长,用户从HTTP跳转到HTTPS需要一些时间: HTTPS要做RSA校验,这会影响到设备性能: 所有CDN节点要支持H ...

  5. Vue脚手架搭建项目

    全局安装vue脚手架 $ npm install -g vue-cli 卸载方法 $ npm uninstall -g vue-cli 查看vue版本(注意:大写的V) $ vue -V 创建项目 $ ...

  6. React Native基础&入门教程:初步使用Flexbox布局

    在上篇中,笔者分享了部分安装并调试React Native应用过程里的一点经验,如果还没有看过的同学请点击<React Native基础&入门教程:调试React Native应用的一小 ...

  7. AndroidTV端的requestFocus()问题

    每次开机盒子或者电视的时候,发现给某些控件设置请求焦点 requestFocus 会失效 最终的解决办法就是延时请求 view.postDelayed(new Runnable() { @Overri ...

  8. Android LayoutInflater 类分析

    作为一名Android开发者,写页面是最普通不过的事情了,在编写页面的时候,系统给提供了两种形式,一种形式是通过XML的方式进行编写,还有一种形式是通过Java代码直接编写   我们知道Android ...

  9. JHipster技术栈定制 - JHipster Registry配置信息加密

    本文说明了如何开启和使用JHipster-Registry的加解密功能. 1 整体规划 1.1 名词说明 名词 说明 备注 对称加密 最快速.最简单的一种加密方式,加密(encryption)与解密( ...

  10. Linux简单配置SendMail发送邮件

    本文简单整理了一下如何在Linux服务器上安装.配置SendMail发送邮件的步骤,此文不是配置邮件服务器,具体测试环境为CentOS Linux release 7.2.1511 (Core) ,如 ...