[十二省联考2019]异或粽子 01trie

链接

luogu

思路

首先求前k大的(xo[i]^xo[j])(i<j)。

考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和直接sort一样、、

咳咳,官方题解是。

一个堆维护i为终点,可以取得位置为\([L,R]\)的最大值为val。

每次选最大的,然后将这个点分裂成两个:

i为终点,可以取得位置为\([L,x-1]\)的最大值为\(val_1\)。

i为终点,可以取得位置为\([x+1,R]\)的最大值为\(val_2\)。

具体咋维护,可持久01trie(他应该就是说的主席树,忘记啦)。

其实可以直接是直接记录当前应该取第几大,建立可持久化01trie

还有一种是把k*2,这样消去了大小限制,直接建立一颗01trie,在上面跑k大,最后除以2

对角线上是有重复的,但是你一定选不到呀,xor起来为0

错误

1.一个hello wrold居然跑10s,垃圾病毒防护天天扫我exe。

2.我居然不知道trie可以求第k大xor值,菜的一批、、、、

代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 5e5 + 6;
ll read() {
ll x = 0, f = 1; char s = getchar();
for (; s > '9' || s < '0'; s = getchar()) if (s == '-') f = -1;
for (; s >= '0' && s <= '9'; s = getchar()) x = x * 10 + s - '0';
return x * f;
}
int n, k, cnt=1, num[N];
ll a[N];
struct node {
int ch[2], siz;
} e[N * 35];
priority_queue<pair<ll, int> > q;
void insert(ll x) {
int p = 1;
for (int i = 31; i >= 0; --i) {
bool T_T = x & (1LL << i);
e[p].siz++;
if (!e[p].ch[T_T])
e[p].ch[T_T] = ++cnt;
p = e[p].ch[T_T];
}
e[p].siz++;
}
ll k_th(ll x, int k) {
if (k > n)
return 0;
ll ans = 0;
int p = 1;
for (int i = 31; i >= 0; --i) {
bool T_T = x & (1LL << i);
if (e[e[p].ch[T_T ^ 1]].siz >= k)
ans = ans | (1LL << i), p = e[p].ch[T_T ^ 1];
else
k -= e[e[p].ch[T_T ^ 1]].siz, p = e[p].ch[T_T];
}
return ans;
}
int main() {
n = read(), k = read() * 2;
insert(0);
for (int i = 1; i <= n; ++i) a[i] = a[i - 1] ^ read(), insert(a[i]);
for (int i = 0; i <= n; ++i) q.push(make_pair(k_th(a[i],num[i]=1),i));
ll ans = 0;
while (k--) {
pair<ll, int> u = q.top();
q.pop();
ans += u.first;
u.first=k_th(a[u.second],++num[u.second]);
if(num[u.second]<n) q.push(u);
}
cout << ans / 2 << "\n";
return 0;
}

[十二省联考2019]异或粽子 01trie的更多相关文章

  1. [十二省联考2019]异或粽子——可持久化trie树+堆

    题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...

  2. 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)

    [BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...

  3. 【简】题解 P5283 [十二省联考2019]异或粽子

    传送门:P5283 [十二省联考2019]异或粽子 题目大意: 给一个长度为n的数列,找到异或和为前k大的区间,并求出这些区间的异或和的代数和. QWQ: 考试时想到了前缀异或 想到了对每个数按二进制 ...

  4. Luogu P5283 / LOJ3048 【[十二省联考2019]异或粽子】

    联考Day1T1...一个考场上蠢了只想到\(O(n^2)\)复杂度的数据结构题 题目大意: 求前\(k\)大区间异或和的和 题目思路: 真的就是个sb数据结构题,可持久化01Trie能过(开O2). ...

  5. Luogu P5283 [十二省联考2019]异或粽子

    感觉不是很难的一题,想了0.5h左右(思路歪了,不过想了一个大常数的两只\(\log\)做法233) 然后码+调了1h,除了一个SB的数组开小外基本上也没什么坑点 先讲一个先想到的方法,我们对于这种问 ...

  6. [十二省联考2019]异或粽子(堆+可持久化Trie)

    前置芝士:可持久化Trie & 堆 类似于超级钢琴,我们用堆维护一个四元组\((st, l, r, pos)\)表示以\(st\)为起点,终点在\([l, r]\)内,里面的最大值的位置为\( ...

  7. Luogu5283 十二省联考2019异或粽子(trie/可持久化trie+堆)

    做前缀异或和,用堆维护一个五元组(x,l,r,p,v),x为区间右端点的值,l~r为区间左端点的范围,p为x在l~r中最大异或和的位置,v为该最大异或和,每次从堆中取出v最大的元素,以p为界将其切成两 ...

  8. 洛谷.5283.[十二省联考2019]异或粽子(可持久化Trie 堆)

    LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找 ...

  9. [十二省联考2019]异或粽子 (可持久化01tire 堆)

    /* 查询异或最大值的方法是前缀和一下, 在01trie上二分 那么我们可以对于n个位置每个地方先求出最大的数, 然后把n个信息扔到堆里, 当我们拿出某个位置的信息时, 将他去除当前最大后最大的信息插 ...

随机推荐

  1. 使用pushstate,指定回退地址

    history.pushState(null,"testname", window.location.href); window.addEventListener('popstat ...

  2. 虚拟机中linux系统的安装教程

    虚拟机是什么? 虚拟机(Virtual Machine)是指一种特殊的软件,可以在计算机和用户之间创建一种环境,用户可以用这个软件所创建的环境来操作.虚拟机就像像真实机器一样运行程序,满足用户的需求. ...

  3. linux系统执行mysql脚本:Can't connect to local MySQL server through socket '/tmp/mysql.sock'

    问题原因:系统找不到临时文件夹下的.sock文件了 解决办法:看一下是不是其他目录下有mysl的.sock文件,使用命令指定到该文件 mysql --socket=/home/mysql/mysql- ...

  4. 常用Java技术社区

      Java生态圈知识链: 求职平台 阿里巴巴社招平台 杭州网易社招平台 微店社招平台 银联社招平台 百度社招平台 Java生态圈知识链: 个人优秀博客 腾讯_运维工程师_刘天斯 阿里_Android ...

  5. Linux内核内存管理算法Buddy和Slab: /proc/meminfo、/proc/buddyinfo、/proc/slabinfo

    slabtop cat /proc/slabinfo # name <active_objs> <num_objs> <objsize> <objpersla ...

  6. SpringBoot单元测试

    一.Service层Junit单元测试 需要的jar包 <dependency> <groupId>org.springframework.boot</groupId&g ...

  7. 【PY】Python3.7+Anaconda3 + PyQt5 + Eric6

    Anaconda下载地址:https://www.continuum.io/downloads pip install pyenchant pip install QScintilla pip ins ...

  8. requests 可以玩接口自动化测试,爬虫也是可以滴

    import requests #1.带参的get请求: url ='URL_你的' requests.get(url,params={"key":"value" ...

  9. Openrasp源码分析

    Openrasp是百度关于rasp技术的开源项目,由于工作需要,之前对rasp的源码进行了简单的分析.文章是之前就写好的,现在放出了,希望对大家有写帮助. OpenRASP中java引擎的源码分析 安 ...

  10. namenode No valid image files

    1,角色日志报错 Encountered exception loading fsimage java.io.FileNotFoundException: No valid image files f ...