证明不等式: $$\bex 1+x\ln\sex{x+\sqrt{1+x^2}}>\sqrt{1+x^2},\quad x>0. \eex$$

证明: 令 $x=\tan t,\ 0<t<\cfrac{\pi}{2}$, 而只要证明 $$\bex 1+\tan t\ln\sex{\sec t+\tan t}>\sec t. \eex$$ 令 $$\bex f(t)=1+\tan t\ln\sex{\sec t+\tan t}-\sec t, \eex$$ 则 $f(0)=0$, $f'(t)=\sec^2t \ln(\sec t+\tan t)>0$. 于是 $f$ 递增, 而 $f(t)>0$, $t>0$.

[再寄小读者之数学篇](2014-06-22 不等式 [中国科学技术大学2011年高等数学B考研试题])的更多相关文章

  1. [再寄小读者之数学篇](2014-06-22 函数恒为零的一个充分条件 [中国科学技术大学2011年高等数学B考研试题])

    设 $f(x)$ 在 $\bbR$ 上连续, 又 $$\bex \phi(x)=f(x)\int_0^x f(t)\rd t \eex$$ 单调递减. 证明: $f\equiv 0$. 证明: 设 $ ...

  2. [再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])

    设数列 $\sed{x_n}$ 满足 $0<x_1<\pi$, $x_{n+1}=\sin x_n\ (n=1,2,\cdots)$. (1) 证明 $\dps{\vlm{n}x_n}$ ...

  3. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  4. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  5. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  6. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  7. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  8. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  9. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

随机推荐

  1. 爬虫系列---scrapy post请求、框架组件和下载中间件+boss直聘爬取

    一 Post 请求 在爬虫文件中重写父类的start_requests(self)方法 父类方法源码(Request): def start_requests(self): for url in se ...

  2. .NET CORE学习笔记系列(2)——依赖注入[8]: .NET Core DI框架[服务消费]

    原文:https://www.cnblogs.com/artech/p/net-core-di-08.html 包含服务注册信息的IServiceCollection对象最终被用来创建作为DI容器的I ...

  3. Autofs自动挂载探讨

    Autofs介绍: mount是用来挂载文件系统的,可以在系统启动的时候挂载也可以在系统启动后挂载.对于本地固定设 备,如硬盘可以使用mount挂载:而光盘.软盘.NFS.SMB等文件系统具有动态性, ...

  4. 浅析String类

    这是对于String类的一些总结,我将会从几个方面并且结合着字符串池等相关知识进行总结 进程如下:                1.对于String类基本知识的一些总结 2.简要介绍字符串池 3.分 ...

  5. LeetCode练习4 找出这两个有序数组的中位数

    给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2  ...

  6. AI 强化学习

    强化学习(reinforcement learning,简称RL), agent policy state action 目标  最大化累计reward 参考链接: https://en.wikipe ...

  7. OCR技术浅析-无代码篇(1)

    图像识别中最贴近我们生活的可能就是 OCR 技术了. OCR 的定义:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打 ...

  8. day02(编程语言,解释器,环境变量,执行方式,pycharm,pip,变量三大组成)

      上节课复习: 重点: 1,进制转换:二进制与十六进制 2,内存分布:栈区 与 堆区 10101001110111 => 2a77 abf1 => 1010101111110001 计算 ...

  9. safari打开的页面数字识别变为蓝色

    今天网页碰到一个很怪异的问题:app打开的一个网页样式是好的,但通过safari打开后数字的颜色变为蓝色,并且还变得可点击了! 原来safari总会把长串数字识别为电话号码,文字变成蓝色,点击还会弹出 ...

  10. DAY10、函数的参数

    一.实参:为形参传递值 调用函数时,实参可以由常量,变量,表达式三种的组合 1.位置实参:必须按照位置的顺序,从左到右为形参传递值 fn1(10, 20, 30) fn1(30, 20, 10) 2. ...