【udacity】机器学习-波士顿房价预测小结
Evernote Export
机器学习的运行步骤
1.导入数据
没什么注意的,成功导入数据集就可以了,打印看下数据的标准格式就行
用个info和describe
2.分析数据
这里要详细分析数据的内容,看看缺省值和数据的特征,主要是为了看到数据的特征,并且人肉分析一下特征值对目标值的大约影响,嗯,就是这样
然后开始划分数据,将数据分为两个部分,一个数据的特征值(features),一个是数据的目标值(target)
这里要用到数据的基本操作,有数据清洗和数据整理等内容。
重点:数据的分割,这里就需要将数据集(如果只有一个数据集)分割为两个部分,一个是训练集,一个是测试集
这里使用的是
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(features,prices,test_size=0.2,random_state=10)
3.模型衡量标准
这里稍微有点懵,因为这一步并不会在接下来马上使用,而是在过程中,你需要评估的一种方式,我这里把这种方式应该是作为一个模块化编程的方式来学习的,而不是部分交互式编程的方式
- 使用 sklearn.metrics 中的 r2_score 来计算 y_true 和 y_predict的R2值,作为对其表现的评判。
- 将他们的表现评分储存到score变量中。
设立模型的衡量标准主要是为了确定你的模型拟合程度
def performance_metric(y_true, y_predict):
"""计算并返回预测值相比于预测值的分数"""
from sklearn.metrics import r2_score
score = r2_score(y_true, y_predict)
return score
4.分析模型表现
这里应该是有对算法的模型选型的过程,这里跳过的原因是因为这一章我们是站在已经有数据模型的方向去考虑问题的,所以跳过了模型的选型和测试的环节,实际上这里应该是最花时间的地方,需要你调参的地方也会很多。
它们是一个决策树模型在不同最大深度下的表现。每一条曲线都直观得显示了随着训练数据量的增加,模型学习曲线的在训练集评分和验证集评分的变化,评分使用决定系数R2。曲线的阴影区域代表的是该曲线的不确定性(用标准差衡量)
5.选择最优参数
选择最优参数的时候也是在已经确定了模型以后的简单调参了,就是选择了决策树的最大深度
6.做出预测
没什么说的,就是带入新的数据进行模拟运算
%23%23%23%20%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%9A%84%E8%BF%90%E8%A1%8C%E6%AD%A5%E9%AA%A4%0A%23%23%23%23%201.%E5%AF%BC%E5%85%A5%E6%95%B0%E6%8D%AE%0A%E6%B2%A1%E4%BB%80%E4%B9%88%E6%B3%A8%E6%84%8F%E7%9A%84%EF%BC%8C%E6%88%90%E5%8A%9F%E5%AF%BC%E5%85%A5%E6%95%B0%E6%8D%AE%E9%9B%86%E5%B0%B1%E5%8F%AF%E4%BB%A5%E4%BA%86%EF%BC%8C%E6%89%93%E5%8D%B0%E7%9C%8B%E4%B8%8B%E6%95%B0%E6%8D%AE%E7%9A%84%E6%A0%87%E5%87%86%E6%A0%BC%E5%BC%8F%E5%B0%B1%E8%A1%8C%0A%E7%94%A8%E4%B8%AAinfo%E5%92%8Cdescribe%0A%23%23%23%23%202.%E5%88%86%E6%9E%90%E6%95%B0%E6%8D%AE%0A%E8%BF%99%E9%87%8C%E8%A6%81%E8%AF%A6%E7%BB%86%E5%88%86%E6%9E%90%E6%95%B0%E6%8D%AE%E7%9A%84%E5%86%85%E5%AE%B9%EF%BC%8C%E7%9C%8B%E7%9C%8B%E7%BC%BA%E7%9C%81%E5%80%BC%E5%92%8C%E6%95%B0%E6%8D%AE%E7%9A%84%E7%89%B9%E5%BE%81%EF%BC%8C%E4%B8%BB%E8%A6%81%E6%98%AF%E4%B8%BA%E4%BA%86%E7%9C%8B%E5%88%B0%E6%95%B0%E6%8D%AE%E7%9A%84%E7%89%B9%E5%BE%81%EF%BC%8C%E5%B9%B6%E4%B8%94%E4%BA%BA%E8%82%89%E5%88%86%E6%9E%90%E4%B8%80%E4%B8%8B%E7%89%B9%E5%BE%81%E5%80%BC%E5%AF%B9%E7%9B%AE%E6%A0%87%E5%80%BC%E7%9A%84%E5%A4%A7%E7%BA%A6%E5%BD%B1%E5%93%8D%EF%BC%8C%E5%97%AF%EF%BC%8C%E5%B0%B1%E6%98%AF%E8%BF%99%E6%A0%B7%0A%E7%84%B6%E5%90%8E%E5%BC%80%E5%A7%8B%E5%88%92%E5%88%86%E6%95%B0%E6%8D%AE%EF%BC%8C%E5%B0%86%E6%95%B0%E6%8D%AE%E5%88%86%E4%B8%BA%E4%B8%A4%E4%B8%AA%E9%83%A8%E5%88%86%EF%BC%8C%E4%B8%80%E4%B8%AA%E6%95%B0%E6%8D%AE%E7%9A%84%E7%89%B9%E5%BE%81%E5%80%BC(features)%EF%BC%8C%E4%B8%80%E4%B8%AA%E6%98%AF%E6%95%B0%E6%8D%AE%E7%9A%84%E7%9B%AE%E6%A0%87%E5%80%BC(target)%0A%E8%BF%99%E9%87%8C%E8%A6%81%E7%94%A8%E5%88%B0%E6%95%B0%E6%8D%AE%E7%9A%84%E5%9F%BA%E6%9C%AC%E6%93%8D%E4%BD%9C%EF%BC%8C%E6%9C%89%E6%95%B0%E6%8D%AE%E6%B8%85%E6%B4%97%E5%92%8C%E6%95%B0%E6%8D%AE%E6%95%B4%E7%90%86%E7%AD%89%E5%86%85%E5%AE%B9%E3%80%82%0A**%E9%87%8D%E7%82%B9%EF%BC%9A%E6%95%B0%E6%8D%AE%E7%9A%84%E5%88%86%E5%89%B2%EF%BC%8C%E8%BF%99%E9%87%8C%E5%B0%B1%E9%9C%80%E8%A6%81%E5%B0%86%E6%95%B0%E6%8D%AE%E9%9B%86(%E5%A6%82%E6%9E%9C%E5%8F%AA%E6%9C%89%E4%B8%80%E4%B8%AA%E6%95%B0%E6%8D%AE%E9%9B%86)%E5%88%86%E5%89%B2%E4%B8%BA%E4%B8%A4%E4%B8%AA%E9%83%A8%E5%88%86%EF%BC%8C%E4%B8%80%E4%B8%AA%E6%98%AF%E8%AE%AD%E7%BB%83%E9%9B%86%EF%BC%8C%E4%B8%80%E4%B8%AA%E6%98%AF%E6%B5%8B%E8%AF%95%E9%9B%86**%0A%3E%E8%BF%99%E9%87%8C%E4%BD%BF%E7%94%A8%E7%9A%84%E6%98%AF%0A%60%60%60python%0Afrom%20sklearn.model_selection%20import%20train_test_split%0AX_train%2C%20X_test%2C%20y_train%2C%20y_test%20%3D%20train_test_split(features%2Cprices%2Ctest_size%3D0.2%2Crandom_state%3D10)%0A%60%60%60%0A%0A%23%23%23%23%203.%E6%A8%A1%E5%9E%8B%E8%A1%A1%E9%87%8F%E6%A0%87%E5%87%86%0A%E8%BF%99%E9%87%8C%E7%A8%8D%E5%BE%AE%E6%9C%89%E7%82%B9%E6%87%B5%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%BF%99%E4%B8%80%E6%AD%A5%E5%B9%B6%E4%B8%8D%E4%BC%9A%E5%9C%A8%E6%8E%A5%E4%B8%8B%E6%9D%A5%E9%A9%AC%E4%B8%8A%E4%BD%BF%E7%94%A8%EF%BC%8C%E8%80%8C%E6%98%AF%E5%9C%A8%E8%BF%87%E7%A8%8B%E4%B8%AD%EF%BC%8C%E4%BD%A0%E9%9C%80%E8%A6%81%E8%AF%84%E4%BC%B0%E7%9A%84%E4%B8%80%E7%A7%8D%E6%96%B9%E5%BC%8F%EF%BC%8C%E6%88%91%E8%BF%99%E9%87%8C%E6%8A%8A%E8%BF%99%E7%A7%8D%E6%96%B9%E5%BC%8F%E5%BA%94%E8%AF%A5%E6%98%AF%E4%BD%9C%E4%B8%BA%E4%B8%80%E4%B8%AA%E6%A8%A1%E5%9D%97%E5%8C%96%E7%BC%96%E7%A8%8B%E7%9A%84%E6%96%B9%E5%BC%8F%E6%9D%A5%E5%AD%A6%E4%B9%A0%E7%9A%84%EF%BC%8C%E8%80%8C%E4%B8%8D%E6%98%AF%E9%83%A8%E5%88%86%E4%BA%A4%E4%BA%92%E5%BC%8F%E7%BC%96%E7%A8%8B%E7%9A%84%E6%96%B9%E5%BC%8F%0A%0A*%20%E4%BD%BF%E7%94%A8%C2%A0sklearn.metrics%C2%A0%E4%B8%AD%E7%9A%84%C2%A0r2_score%C2%A0%E6%9D%A5%E8%AE%A1%E7%AE%97%C2%A0y_true%C2%A0%E5%92%8C%C2%A0y_predict%E7%9A%84R2%E5%80%BC%EF%BC%8C%E4%BD%9C%E4%B8%BA%E5%AF%B9%E5%85%B6%E8%A1%A8%E7%8E%B0%E7%9A%84%E8%AF%84%E5%88%A4%E3%80%82%0A*%20%E5%B0%86%E4%BB%96%E4%BB%AC%E7%9A%84%E8%A1%A8%E7%8E%B0%E8%AF%84%E5%88%86%E5%82%A8%E5%AD%98%E5%88%B0score%E5%8F%98%E9%87%8F%E4%B8%AD%E3%80%82%0A**%E8%AE%BE%E7%AB%8B%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%A1%A1%E9%87%8F%E6%A0%87%E5%87%86%E4%B8%BB%E8%A6%81%E6%98%AF%E4%B8%BA%E4%BA%86%E7%A1%AE%E5%AE%9A%E4%BD%A0%E7%9A%84%E6%A8%A1%E5%9E%8B%E6%8B%9F%E5%90%88%E7%A8%8B%E5%BA%A6**%0A%60%60%60python%0Adef%20performance_metric(y_true%2C%20y_predict)%3A%0A%20%20%20%20%22%22%22%E8%AE%A1%E7%AE%97%E5%B9%B6%E8%BF%94%E5%9B%9E%E9%A2%84%E6%B5%8B%E5%80%BC%E7%9B%B8%E6%AF%94%E4%BA%8E%E9%A2%84%E6%B5%8B%E5%80%BC%E7%9A%84%E5%88%86%E6%95%B0%22%22%22%0A%20%20%20%20from%20%20sklearn.metrics%20import%20r2_score%0A%20%20%20%20score%20%3D%20r2_score(y_true%2C%20y_predict)%0A%0A%20%20%20%20return%20score%0A%60%60%60%0A%23%23%23%23%204.%E5%88%86%E6%9E%90%E6%A8%A1%E5%9E%8B%E8%A1%A8%E7%8E%B0%0A%E8%BF%99%E9%87%8C%E5%BA%94%E8%AF%A5%E6%98%AF%E6%9C%89%E5%AF%B9%E7%AE%97%E6%B3%95%E7%9A%84%E6%A8%A1%E5%9E%8B%E9%80%89%E5%9E%8B%E7%9A%84%E8%BF%87%E7%A8%8B%EF%BC%8C%E8%BF%99%E9%87%8C%E8%B7%B3%E8%BF%87%E7%9A%84%E5%8E%9F%E5%9B%A0%E6%98%AF%E5%9B%A0%E4%B8%BA%E8%BF%99%E4%B8%80%E7%AB%A0%E6%88%91%E4%BB%AC%E6%98%AF%E7%AB%99%E5%9C%A8%E5%B7%B2%E7%BB%8F%E6%9C%89%E6%95%B0%E6%8D%AE%E6%A8%A1%E5%9E%8B%E7%9A%84%E6%96%B9%E5%90%91%E5%8E%BB%E8%80%83%E8%99%91%E9%97%AE%E9%A2%98%E7%9A%84%EF%BC%8C%E6%89%80%E4%BB%A5%E8%B7%B3%E8%BF%87%E4%BA%86%E6%A8%A1%E5%9E%8B%E7%9A%84%E9%80%89%E5%9E%8B%E5%92%8C%E6%B5%8B%E8%AF%95%E7%9A%84%E7%8E%AF%E8%8A%82%EF%BC%8C%E5%AE%9E%E9%99%85%E4%B8%8A%E8%BF%99%E9%87%8C%E5%BA%94%E8%AF%A5%E6%98%AF%E6%9C%80%E8%8A%B1%E6%97%B6%E9%97%B4%E7%9A%84%E5%9C%B0%E6%96%B9%EF%BC%8C%E9%9C%80%E8%A6%81%E4%BD%A0%E8%B0%83%E5%8F%82%E7%9A%84%E5%9C%B0%E6%96%B9%E4%B9%9F%E4%BC%9A%E5%BE%88%E5%A4%9A%E3%80%82%0A%0A%3E%E5%AE%83%E4%BB%AC%E6%98%AF%E4%B8%80%E4%B8%AA%E5%86%B3%E7%AD%96%E6%A0%91%E6%A8%A1%E5%9E%8B%E5%9C%A8%E4%B8%8D%E5%90%8C%E6%9C%80%E5%A4%A7%E6%B7%B1%E5%BA%A6%E4%B8%8B%E7%9A%84%E8%A1%A8%E7%8E%B0%E3%80%82%E6%AF%8F%E4%B8%80%E6%9D%A1%E6%9B%B2%E7%BA%BF%E9%83%BD%E7%9B%B4%E8%A7%82%E5%BE%97%E6%98%BE%E7%A4%BA%E4%BA%86%E9%9A%8F%E7%9D%80%E8%AE%AD%E7%BB%83%E6%95%B0%E6%8D%AE%E9%87%8F%E7%9A%84%E5%A2%9E%E5%8A%A0%EF%BC%8C%E6%A8%A1%E5%9E%8B%E5%AD%A6%E4%B9%A0%E6%9B%B2%E7%BA%BF%E7%9A%84%E5%9C%A8%E8%AE%AD%E7%BB%83%E9%9B%86%E8%AF%84%E5%88%86%E5%92%8C%E9%AA%8C%E8%AF%81%E9%9B%86%E8%AF%84%E5%88%86%E7%9A%84%E5%8F%98%E5%8C%96%EF%BC%8C%E8%AF%84%E5%88%86%E4%BD%BF%E7%94%A8%E5%86%B3%E5%AE%9A%E7%B3%BB%E6%95%B0R2%E3%80%82%E6%9B%B2%E7%BA%BF%E7%9A%84%E9%98%B4%E5%BD%B1%E5%8C%BA%E5%9F%9F%E4%BB%A3%E8%A1%A8%E7%9A%84%E6%98%AF%E8%AF%A5%E6%9B%B2%E7%BA%BF%E7%9A%84%E4%B8%8D%E7%A1%AE%E5%AE%9A%E6%80%A7%EF%BC%88%E7%94%A8%E6%A0%87%E5%87%86%E5%B7%AE%E8%A1%A1%E9%87%8F%EF%BC%89%0A%0A%23%23%23%23%205.%E9%80%89%E6%8B%A9%E6%9C%80%E4%BC%98%E5%8F%82%E6%95%B0%0A%E9%80%89%E6%8B%A9%E6%9C%80%E4%BC%98%E5%8F%82%E6%95%B0%E7%9A%84%E6%97%B6%E5%80%99%E4%B9%9F%E6%98%AF%E5%9C%A8%E5%B7%B2%E7%BB%8F%E7%A1%AE%E5%AE%9A%E4%BA%86%E6%A8%A1%E5%9E%8B%E4%BB%A5%E5%90%8E%E7%9A%84%E7%AE%80%E5%8D%95%E8%B0%83%E5%8F%82%E4%BA%86%EF%BC%8C%E5%B0%B1%E6%98%AF%E9%80%89%E6%8B%A9%E4%BA%86%E5%86%B3%E7%AD%96%E6%A0%91%E7%9A%84%E6%9C%80%E5%A4%A7%E6%B7%B1%E5%BA%A6%0A%0A%23%23%23%23%206.%E5%81%9A%E5%87%BA%E9%A2%84%E6%B5%8B%0A%E6%B2%A1%E4%BB%80%E4%B9%88%E8%AF%B4%E7%9A%84%EF%BC%8C%E5%B0%B1%E6%98%AF%E5%B8%A6%E5%85%A5%E6%96%B0%E7%9A%84%E6%95%B0%E6%8D%AE%E8%BF%9B%E8%A1%8C%E6%A8%A1%E6%8B%9F%E8%BF%90%E7%AE%97
【udacity】机器学习-波士顿房价预测小结的更多相关文章
- 【udacity】机器学习-波士顿房价预测
import numpy as np import pandas as pd from Udacity.model_check.boston_house_price import visuals as ...
- 波士顿房价预测 - 最简单入门机器学习 - Jupyter
机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰 ...
- 机器学习实战二:波士顿房价预测 Boston Housing
波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一 ...
- Python之机器学习-波斯顿房价预测
目录 波士顿房价预测 导入模块 获取数据 打印数据 特征选择 散点图矩阵 关联矩阵 训练模型 可视化 波士顿房价预测 导入模块 import pandas as pd import numpy as ...
- Tensorflow之多元线性回归问题(以波士顿房价预测为例)
一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...
- 《用Python玩转数据》项目—线性回归分析入门之波士顿房价预测(二)
接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测. 二.使用tensorflow拟合boston房价datasets 1.数据处理依然利用sklearn来分训练集 ...
- chapter02 回归模型在''美国波士顿房价预测''问题中实践
#coding=utf8 # 从sklearn.datasets导入波士顿房价数据读取器. from sklearn.datasets import load_boston # 从sklearn.mo ...
- 基于sklearn的波士顿房价预测_线性回归学习笔记
> 以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklear ...
- 02-11 RANSAC算法线性回归(波斯顿房价预测)
目录 RANSAC算法线性回归(波斯顿房价预测) 一.RANSAC算法流程 二.导入模块 三.获取数据 四.训练模型 五.可视化 更新.更全的<机器学习>的更新网站,更有python.go ...
随机推荐
- jquery源码分析(二)——架构设计
要学习一个库首先的理清它整体架构: 1.jQuery源码大致架构如下:(基于 jQuery 1.11 版本,共计8829行源码)(21,94) 定义了一些变量和函数jQu ...
- javaScript面向对象继承方法经典实现
转自原文javaScript面向对象继承方法经典实现 JavaScript的出现已经将近20多年了,但是对这个预言的褒贬还是众说纷纭.很多人都说JavaScript不能算是面向对象的变成语言.但是Ja ...
- SPOJ 1811LCS Longest Common Substring
后缀自己主动机裸题.... Longest Common Substring Time Limit: 2000MS Memory Limit: Unknown 64bit IO Format: ...
- Android ScrollView中嵌套ListView
由于要做一个相似美团的团购产品.scrollview中还有嵌入listview,要是直接把listview嵌进scrollview中.listview的高度是固定的不能进行滑动.默认情况下Androi ...
- 一种加快在苹果app store中上架的方法
预计近期苹果app应用上架的比較多,审核比較慢,如今一个app从提交到上架短则7.8天.长则2.3个星期.我在实际上线应用时,总结了一个简单有用的小技巧,能够加快上架时间,近期使用这样的方法后.我们基 ...
- 【cl】maven新建项目
http://blog.csdn.net/sushengmiyan/article/details/40142771 使用maven创建一个helloworld 在本地硬盘创建一个文件夹作为maven ...
- poj1179 区间dp(记忆化搜索写法)有巨坑!
http://poj.org/problem?id=1179 Description Polygon is a game for one player that starts on a polygon ...
- HDU--1558--Segment set--并查集***经典***
Segment set Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- Linux - 文件查找方法
文件查找方法 1.which 查找可执行文件的位置 [root@local /]# which passwd /usr/bin/passwd 2.whereis 查找可执行文件的位置与相关的文件 [r ...
- hdoj--1864--最大保险额(背包)
最大报销额 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...