Code:

#include<cstdio>
using namespace std;
typedef long long ll;
const int R=13;
ll a[R];
ll n,ans;
int m,cnt=0;
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
void dfs(int cur,ll lcm,int id){
if(cur>cnt)return;
lcm=a[cur]/gcd(a[cur],lcm)*lcm; if(id)ans+=(n-1)/lcm;
else ans-=(n-1)/lcm;
for(int i=cur+1;i<=cnt;++i)
dfs(i,lcm,!id);
}
int main(){
while(scanf("%lld%d",&n,&m)!=EOF)
{
ans=cnt=0;
for(int i=1;i<=m;++i){
ll k;
scanf("%lld",&k);
if(k)a[++cnt]=k;
}
for(int i=1;i<=cnt;++i)
dfs(i,a[i],1);
printf("%lld\n",ans);
}
return 0;
}

  

How many integers can you find HDU - 1796_容斥计数的更多相关文章

  1. Co-prime HDU - 4135_容斥计数

    Code: #include<cstdio> #include<cstring> #include<cmath> #include<iostream> ...

  2. HDU 4135 容斥

    问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. ...

  3. HDU 2841 容斥 或 反演

    $n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...

  4. HDU 1695 容斥

    又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...

  5. HDU 4059 容斥初步练习

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  6. hdu 1220 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  7. 题解报告:hdu 4135 Co-prime(容斥定理入门)

    Problem Description Given a number N, you are asked to count the number of integers between A and B ...

  8. HDU How many integers can you find 容斥

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  9. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

随机推荐

  1. C# 利用 Time 组件实现 Button 控件的长按功能

    参考链接:https://blog.csdn.net/yongh701/article/details/50134379 如果在C#窗体,单纯点击按钮,之后将鼠标长时间放在这个按钮上,不放开,双击按钮 ...

  2. mybatis使用-helloword(一)

    前言 首先感谢https://my.oschina.net/zudajun/blog/665956(jd上也出书了貌似)  这位作者.让自己能系统的看完和理解第一个框架的源码(其实我反复看了4遍以上, ...

  3. poj 3469 最小割模板sap+gap+弧优化

    /*以核心1为源点,以核心2为汇点建图,跑一遍最大流*/ #include<stdio.h> #include<string.h> #include<queue> ...

  4. HDU 4506

    EASY题,快速幂... #include <iostream> #include <cstdio> #include <cstring> #include < ...

  5. SecureCRT 会话丢失的处理办法

    SecureCRT 会话丢失的处理办法 在SecureCRT中已经有了70多个session,密码都记忆了,当然有些失效的也没有删除: 某一天,打开SecureCRT之后,发现session都没有了, ...

  6. python TypeError: &#39;builtin_function_or_method&#39; object is not iterable keys

    statinfo = os.stat( OneFilePath ) if AllFiles.has_key( statinfo.st_size ): OneKey = AllFiles[ statin ...

  7. 【cl】本地安装maven的jar包报错Artifact is already in the local repository

    原因是我直接把jar包放在了仓库里面 解决办法:将jar办放在不是仓库路径位置,在进行install就okle

  8. UVAlive 6560 - The Urge to Merge(状压dp)

    LA 6560 - The Urge to Merge option=com_onlinejudge&Itemid=8&page=show_problem&problem=45 ...

  9. PHP独立操作符

    & 与 ^ 位逻辑异或 $ # ! 逻辑或 ~  按位取反

  10. [WebServer] Linux下Apache与Tomcat整合的简单方法

    Apache与Tomcat比较联系 apache支持静态页,tomcat支持动态的,比如servlet等. 一般使用apache+tomcat的话,apache只是作为一个转发,对jsp的处理是由to ...