转载请标明出处:一片枫叶的专栏

android开发过程中常常会用到缓存。如今主流的app中图片等资源的缓存策略通常是分两级。一个是内存级别的缓存,一个是磁盘级别的缓存。

作为android系统的维护者google也开源了其缓存方案,LruCache和DiskLruCache。从android3.1開始LruCache已经作为android源代码的一部分维护在android系统中。为了兼容曾经的版本号android的support-v4包也提供了LruCache的维护,假设App须要兼容到android3.1之前的版本号就须要使用support-v4包中的LruCache,假设不须要兼容到android3.1则直接使用android源代码中的LruCache就可以,这里须要注意的是DiskLruCache并非android源代码的一部分。

在LruCache的源代码中。关于LruCache有这种一段介绍:

A cache that holds strong references to a limited number of values. Each time a value is accessed, it is moved to the head of a queue. When a value is added to a full cache, the value at the end of that queue is evicted and may become eligible for garbage collection.

cache对象通过一个强引用来訪问内容。每次当一个item被訪问到的时候,这个item就会被移动到一个队列的队首。当一个item被加入到已经满了的队列时,这个队列的队尾的item就会被移除。

事实上这个实现的过程就是LruCache的缓存策略。即Lru–>(Least recent used)最少近期使用算法。

以下我们详细看一下LruCache的实现:

public class LruCache<K, V> {
private final LinkedHashMap<K, V> map; /** Size of this cache in units. Not necessarily the number of elements. */
private int size;
private int maxSize; private int putCount;
private int createCount;
private int evictionCount;
private int hitCount;
private int missCount; /**
* @param maxSize for caches that do not override {@link #sizeOf}, this is
* the maximum number of entries in the cache. For all other caches,
* this is the maximum sum of the sizes of the entries in this cache.
*/
public LruCache(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
} /**
* Sets the size of the cache.
*
* @param maxSize The new maximum size.
*/
public void resize(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
} synchronized (this) {
this.maxSize = maxSize;
}
trimToSize(maxSize);
} /**
* Returns the value for {@code key} if it exists in the cache or can be
* created by {@code #create}. If a value was returned, it is moved to the
* head of the queue. This returns null if a value is not cached and cannot
* be created.
*/
public final V get(K key) {
if (key == null) {
throw new NullPointerException("key == null");
} V mapValue;
synchronized (this) {
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
} /*
* Attempt to create a value. This may take a long time, and the map
* may be different when create() returns. If a conflicting value was
* added to the map while create() was working, we leave that value in
* the map and release the created value.
*/ V createdValue = create(key);
if (createdValue == null) {
return null;
} synchronized (this) {
createCount++;
mapValue = map.put(key, createdValue); if (mapValue != null) {
// There was a conflict so undo that last put
map.put(key, mapValue);
} else {
size += safeSizeOf(key, createdValue);
}
} if (mapValue != null) {
entryRemoved(false, key, createdValue, mapValue);
return mapValue;
} else {
trimToSize(maxSize);
return createdValue;
}
} /**
* Caches {@code value} for {@code key}. The value is moved to the head of
* the queue.
*
* @return the previous value mapped by {@code key}.
*/
public final V put(K key, V value) {
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
} V previous;
synchronized (this) {
putCount++;
size += safeSizeOf(key, value);
previous = map.put(key, value);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
} if (previous != null) {
entryRemoved(false, key, previous, value);
} trimToSize(maxSize);
return previous;
} /**
* Remove the eldest entries until the total of remaining entries is at or
* below the requested size.
*
* @param maxSize the maximum size of the cache before returning. May be -1
* to evict even 0-sized elements.
*/
public void trimToSize(int maxSize) {
while (true) {
K key;
V value;
synchronized (this) {
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
} if (size <= maxSize) {
break;
} Map.Entry<K, V> toEvict = map.eldest();
if (toEvict == null) {
break;
} key = toEvict.getKey();
value = toEvict.getValue();
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
} entryRemoved(true, key, value, null);
}
} /**
* Removes the entry for {@code key} if it exists.
*
* @return the previous value mapped by {@code key}.
*/
public final V remove(K key) {
if (key == null) {
throw new NullPointerException("key == null");
} V previous;
synchronized (this) {
previous = map.remove(key);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
} if (previous != null) {
entryRemoved(false, key, previous, null);
} return previous;
} /**
* Called for entries that have been evicted or removed. This method is
* invoked when a value is evicted to make space, removed by a call to
* {@link #remove}, or replaced by a call to {@link #put}. The default
* implementation does nothing.
*
* <p>The method is called without synchronization: other threads may
* access the cache while this method is executing.
*
* @param evicted true if the entry is being removed to make space, false
* if the removal was caused by a {@link #put} or {@link #remove}.
* @param newValue the new value for {@code key}, if it exists. If non-null,
* this removal was caused by a {@link #put}. Otherwise it was caused by
* an eviction or a {@link #remove}.
*/
protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {} /**
* Called after a cache miss to compute a value for the corresponding key.
* Returns the computed value or null if no value can be computed. The
* default implementation returns null.
*
* <p>The method is called without synchronization: other threads may
* access the cache while this method is executing.
*
* <p>If a value for {@code key} exists in the cache when this method
* returns, the created value will be released with {@link #entryRemoved}
* and discarded. This can occur when multiple threads request the same key
* at the same time (causing multiple values to be created), or when one
* thread calls {@link #put} while another is creating a value for the same
* key.
*/
protected V create(K key) {
return null;
} private int safeSizeOf(K key, V value) {
int result = sizeOf(key, value);
if (result < 0) {
throw new IllegalStateException("Negative size: " + key + "=" + value);
}
return result;
} /**
* Returns the size of the entry for {@code key} and {@code value} in
* user-defined units. The default implementation returns 1 so that size
* is the number of entries and max size is the maximum number of entries.
*
* <p>An entry's size must not change while it is in the cache.
*/
protected int sizeOf(K key, V value) {
return 1;
} /**
* Clear the cache, calling {@link #entryRemoved} on each removed entry.
*/
public final void evictAll() {
trimToSize(-1); // -1 will evict 0-sized elements
} /**
* For caches that do not override {@link #sizeOf}, this returns the number
* of entries in the cache. For all other caches, this returns the sum of
* the sizes of the entries in this cache.
*/
public synchronized final int size() {
return size;
} /**
* For caches that do not override {@link #sizeOf}, this returns the maximum
* number of entries in the cache. For all other caches, this returns the
* maximum sum of the sizes of the entries in this cache.
*/
public synchronized final int maxSize() {
return maxSize;
} /**
* Returns the number of times {@link #get} returned a value that was
* already present in the cache.
*/
public synchronized final int hitCount() {
return hitCount;
} /**
* Returns the number of times {@link #get} returned null or required a new
* value to be created.
*/
public synchronized final int missCount() {
return missCount;
} /**
* Returns the number of times {@link #create(Object)} returned a value.
*/
public synchronized final int createCount() {
return createCount;
} /**
* Returns the number of times {@link #put} was called.
*/
public synchronized final int putCount() {
return putCount;
} /**
* Returns the number of values that have been evicted.
*/
public synchronized final int evictionCount() {
return evictionCount;
} /**
* Returns a copy of the current contents of the cache, ordered from least
* recently accessed to most recently accessed.
*/
public synchronized final Map<K, V> snapshot() {
return new LinkedHashMap<K, V>(map);
} @Override public synchronized final String toString() {
int accesses = hitCount + missCount;
int hitPercent = accesses != 0 ? (100 * hitCount / accesses) : 0;
return String.format("LruCache[maxSize=%d,hits=%d,misses=%d,hitRate=%d%%]",
maxSize, hitCount, missCount, hitPercent);
}
}

能够看到LruCache初始化的时候须要使用泛型,一般的我们这样初始化LruCache对象:

// 获取应用程序最大可用内存
int maxMemory = (int) Runtime.getRuntime().maxMemory();
int cacheSize = maxMemory / 8;
// 设置图片缓存大小为程序最大可用内存的1/8
mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {
@Override
protected int sizeOf(String key, Bitmap bitmap) {
return bitmap.getByteCount();
}
};

这里我们假设通过String作为key保存bitmap对象,同一时候须要传递一个int型的maxSize数值。主要用于设置LruCache链表的最大值。

查看其构造方法:

// 获取应用程序最大可用内存
int maxMemory = (int) Runtime.getRuntime().maxMemory();
int cacheSize = maxMemory / 8;
// 设置图片缓存大小为程序最大可用内存的1/8
mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {
@Override
protected int sizeOf(String key, Bitmap bitmap) {
return bitmap.getByteCount();
}
};

能够看到其基本的是初始化了maxSize和map链表对象。

然后查看put方法:

public final V put(K key, V value) {
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
} V previous;
synchronized (this) {
putCount++;
size += safeSizeOf(key, value);
previous = map.put(key, value);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
} if (previous != null) {
entryRemoved(false, key, previous, value);
} trimToSize(maxSize);
return previous;
}

须要传递两个參数:K和V,首先做了一下參数的推断,然后定义一个保存前一个Value值得暂时变量。让putCount(put运行的次数)自增,让map的size大小自增。

须要注意的是这里的

previous = map.put(key, value);

我们看一下这里的map.put()的详细实现:

@Override public V put(K key, V value) {
if (key == null) {
return putValueForNullKey(value);
} int hash = Collections.secondaryHash(key);
HashMapEntry<K, V>[] tab = table;
int index = hash & (tab.length - 1);
for (HashMapEntry<K, V> e = tab[index]; e != null; e = e.next) {
if (e.hash == hash && key.equals(e.key)) {
preModify(e);
V oldValue = e.value;
e.value = value;
return oldValue;
}
} // No entry for (non-null) key is present; create one
modCount++;
if (size++ > threshold) {
tab = doubleCapacity();
index = hash & (tab.length - 1);
}
addNewEntry(key, value, hash, index);
return null;
}

将Key与Value的值压入Map中,这里推断了一下假设map中已经存在该key,value键值对,则不再压入map,并将Value值返回,否则将该键值对压入Map中。并返回null;

返回继续put方法:

previous = map.put(key, value);
if (previous != null) {
size -= safeSizeOf(key, previous);
}

能够看到这里我们推断map.put方法的返回值是否为空。假设不为空的话,则说明我们刚刚并没有将我么你的键值对压入Map中,所以这里的size须要自减;

然后以下:

if (previous != null) {
entryRemoved(false, key, previous, value);
}

这里推断previous是否为空,假设不为空的话,调用了一个空的实现方法entryRemoved(),也就是说我们能够实现自己的LruCache并在加入缓存的时候若存在该缓存能够重写这种方法;

以下调用了trimToSize(maxSize)方法:

public void trimToSize(int maxSize) {
while (true) {
K key;
V value;
synchronized (this) {
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
} if (size <= maxSize) {
break;
} Map.Entry<K, V> toEvict = map.eldest();
if (toEvict == null) {
break;
} key = toEvict.getKey();
value = toEvict.getValue();
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
} entryRemoved(true, key, value, null);
}
}

该方法主要是推断该Map的大小是否已经达到阙值,若达到,则将Map队尾的元素(最不常使用的元素)remove掉。

总结:

LruCache put方法,将键值对压入Map数据结构中。若这是Map的大小已经大于LruCache中定义的最大值,则将Map中最早压入的元素remove掉;

查看get方法:

public final V get(K key) {
if (key == null) {
throw new NullPointerException("key == null");
} V mapValue;
synchronized (this) {
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
} /*
* Attempt to create a value. This may take a long time, and the map
* may be different when create() returns. If a conflicting value was
* added to the map while create() was working, we leave that value in
* the map and release the created value.
*/ V createdValue = create(key);
if (createdValue == null) {
return null;
} synchronized (this) {
createCount++;
mapValue = map.put(key, createdValue); if (mapValue != null) {
// There was a conflict so undo that last put
map.put(key, mapValue);
} else {
size += safeSizeOf(key, createdValue);
}
} if (mapValue != null) {
entryRemoved(false, key, createdValue, mapValue);
return mapValue;
} else {
trimToSize(maxSize);
return createdValue;
}
}

能够看到參数值为Key。简单的理解就是通过key值从map中取出Value值。

详细来说,推断map中是否含有key值value值。若存在。则hitCount(击中元素数量)自增,并返回Value值。若没有击中,则运行create(key)方法,这里看到create方法是一个空的实现方法,返回值为null。所以我们能够重写该方法,在调用get(key)的时候若没有找到value值,则自己主动创建一个value值并压入map中。

总结:

  • LruCache,内部使用Map保存内存级别的缓存

  • LruCache使用泛型能够设配各种类型

  • LruCache使用了Lru算法保存数据(最短最少使用least recent use)

  • LruCache仅仅用使用put和get方法压入数据和取出数据

另外对android源代码解析方法感兴趣的可參考我的:

android源代码解析之(一)–>android项目构建过程

android源代码解析之(二)–>异步消息机制

android源代码解析之(三)–>异步任务AsyncTask

android源代码解析之(四)–>HandlerThread

android源代码解析之(五)–>IntentService

android源代码解析之(六)–>Log


本文以同步至github中:https://github.com/yipianfengye/androidSource。欢迎star和follow


Android源代码解析之(七)--&gt;LruCache缓存类的更多相关文章

  1. Android源代码解析之(十三)--&gt;apk安装流程

    转载请标明出处:一片枫叶的专栏 上一篇文章中给大家分析了一下android系统启动之后调用PackageManagerService服务并解析系统特定文件夹.解析apk文件并安装的过程,这个安装过程实 ...

  2. Android源代码解析之(四)--&gt;HandlerThread

    转载请标明出处:一片枫叶的专栏 上一篇文章中我们解说了AsyncTast的基本使用以及实现原理,我们知道AsyncTask内部是通过线程池和Handler实现的.通过对线程池和handler的封装实现 ...

  3. Android源代码解析之(六)--&gt;Log日志

    转载请标明出处:一片枫叶的专栏 首先说点题外话,对于想学android framework源代码的同学,事实上能够在github中fork一份,详细地址:platform_frameworks_bas ...

  4. Android源代码解析之(三)--&gt;异步任务AsyncTask

    转载请标明出处:一片枫叶的专栏 上一篇文章中我们解说了android中的异步消息机制. 主要解说了Handler对象的使用方式.消息的发送流程等.android的异步消息机制是android中多任务处 ...

  5. Android 源代码解析 之 setContentView

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/41894125,本文出自:[张鸿洋的博客] 大家在平时的开发中.对于setCont ...

  6. PureMVC(JS版)源码解析(七):Mediator类

    之前的博文中,我们分析了SimpleCommand类和MacroCommand类,这两个类用作"业务逻辑(business logic)"处理,今天,我们讲一些和UI界面相关联的M ...

  7. Spring源代码解析

    Spring源代码解析(一):IOC容器:http://www.iteye.com/topic/86339 Spring源代码解析(二):IoC容器在Web容器中的启动:http://www.itey ...

  8. Spring源代码解析(收藏)

    Spring源代码解析(收藏)   Spring源代码解析(一):IOC容器:http://www.iteye.com/topic/86339 Spring源代码解析(二):IoC容器在Web容器中的 ...

  9. android之LruCache源代码解析

    移动设备开发中,因为移动设备(手机等)的内存有限,所以使用有效的缓存技术是必要的.android提供来一个缓存工具类LruCache,开发中我们会经经常使用到,以下来他是怎样实现的. 在package ...

随机推荐

  1. CF802G Fake News (easy)

    CF802G Fake News (easy) 题意翻译 给定一个字符串询问能否听过删除一些字母使其变为“heidi” 如果可以输出“YES”,不然为“NO” 题目描述 As it's the fir ...

  2. [using_microsoft_infopath_2010]Chapter10 与SharePoint Designer工作流集成

    本章概要: 1.创建工作流集成表单 2.允许工作流手动触发 3.创建自定义动作按钮 4.使用人物设计器 5.维护工作流人物表单

  3. 编程算法 - 求1+2+...+n(模板类) 代码(C++)

    求1+2+...+n(模板类) 代码(C++) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 求1+2+...+n, 要求不能使用乘除法\for\whil ...

  4. HDU-1042-N!(Java大法好 &amp;&amp; HDU大数水题)

    N! Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Subm ...

  5. python fuzzy c-means demo

    摘自:http://pythonhosted.org/scikit-fuzzy/auto_examples/plot_cmeans.html#example-plot-cmeans-py,加入了自己的 ...

  6. 对于NAS,IP SAN以及iSCSCI SAN存储的一些认识和理解

    一直以来用户对于在选购存储产品上有许多不清楚,市场上有NAS, FC SAN,IP SAN和iSCSCI SAN产品,到底哪种类型的产品更适合支撑企业的应用系统呢? 我们经常可以听到用户讲: “NAS ...

  7. 利用hexo+github创建个人博客

    因为想拥有一个独属于自己的个人博客啊. 安装部署hexo 进入一个安全的目录,cd ~/Desktop 在 GitHub 上新建一个空 repo,repo 名称是「你的GitHub用户名.github ...

  8. SpringBoot(九) ElasticSearch 全文检索

    ElasticSearch ​ ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用 ...

  9. log4j:WARN Please initialize the log4j system properly.解决方案

    在使用quarz任务调度框架时的错误,实际上这个问题很常见,并不影响程序的使用,只是缺少日志输出,完整错误信息: log4j:WARN No appenders could be found for ...

  10. (转载)Android项目实战(二十八):Zxing二维码实现及优化

    Android项目实战(二十八):Zxing二维码实现及优化   前言: 多年之前接触过zxing实现二维码,没想到今日项目中再此使用竟然使用的还是zxing,百度之,竟是如此牛的玩意. 当然,项目中 ...