zendiscovery 的Ping机制
ping是集群发现的基本手段,通过在网络上广播或者指定ping某些节点获取集群信息,从而可以找到集群的master加入集群。zenDiscovery实现了两种凭机制:广播与单播。本篇将详细分析一些这MulticastZenPing机制的实现为后面的集群发现和master选举做好铺垫。
首先看一下广播(MulticastZenPing),广播的原理很简单,节点启动后向网络发送广播信息,任何收到的节点只要集群名字相同都应该对此广播信息作出回应。这样该节点就获取了集群的相关信息。它定义了一个action:"internal:discovery/zen/multicast"和广播的信息头:INTERNAL_HEADER 。之前说过NettyTransport是cluster通信的基础,但是广播却没有使它。它使用了java的MulticastSocket。这里简单的介绍一下MulticastSocket的使用。它是一个UDP 机制的socket,用来进行多个数据包的广播。它可以帮到一个ip形成一个group,任何MulticastSocket都可以join进来,组内的socket发送的信息会被订阅了改组的所有机器接收到。elasticsearch对其进行了封装形成了MulticastChannel,有兴趣可以参考相关源码。
首先看一下MulticastZenPing的几个辅助内部类:
它总共定义了4个内部类,这些内部类和它一起完成广播功能。FinalizingPingCollection是一pingresponse的容器,所有的响应都用它来存储。MulticastPingResponseRequestHandler它是response处理类,类似于之前所说的nettytransportHandler,它虽然使用的不是netty,但是它也定义了一个messageReceived的方法,当收到请求时直接返回一个response。MulticastPingResponse就不用细说了,它就是一个响应类。最后要着重说一下Receiver类,因为广播并不是使用NettyTransport,因此对于消息处理逻辑都在Receiver中。在初始化MulticastZenPing时会将receiver注册进去。
protected void doStart() throws ElasticsearchException {
try {
....
multicastChannel = MulticastChannel.getChannel(nodeName(), shared,
new MulticastChannel.Config(port, group, bufferSize, ttl, networkService.resolvePublishHostAddress(address)),
new Receiver());//将receiver注册到channel中
} catch (Throwable t) {
....
}
}
Receiver类基础了Listener,实现了3个方法,消息经过onMessage方法区分,如果是内部ping则使用handleNodePingRequest方法处理,否则使用handleExternalPingRequest处理,区分方法很简单,就是读取信息都看它是否符合所定义的INTERNAL_HEADER 信息头。下面是nodeping处理的代码:
private void handleNodePingRequest(int id, DiscoveryNode requestingNodeX, ClusterName requestClusterName) {
....
final DiscoveryNodes discoveryNodes = contextProvider.nodes();
final DiscoveryNode requestingNode = requestingNodeX;
if (requestingNode.id().equals(discoveryNodes.localNodeId())) {
// 自身发出的ping,忽略
return;
}
//只接受本集群ping
if (!requestClusterName.equals(clusterName)) {
...return;
}
// 两个client间不需要ping
if (!discoveryNodes.localNode().shouldConnectTo(requestingNode)) {return;
}
//新建一个response
final MulticastPingResponse multicastPingResponse = new MulticastPingResponse();
multicastPingResponse.id = id;
multicastPingResponse.pingResponse = new PingResponse(discoveryNodes.localNode(), discoveryNodes.masterNode(), clusterName, contextProvider.nodeHasJoinedClusterOnce());
//无法连接的情况
if (!transportService.nodeConnected(requestingNode)) {
// do the connect and send on a thread pool
threadPool.generic().execute(new Runnable() {
@Override
public void run() {
// connect to the node if possible
try {
transportService.connectToNode(requestingNode);
transportService.sendRequest(requestingNode, ACTION_NAME, multicastPingResponse, new EmptyTransportResponseHandler(ThreadPool.Names.SAME) {
@Override
public void handleException(TransportException exp) {
logger.warn("failed to receive confirmation on sent ping response to [{}]", exp, requestingNode);
}
});
} catch (Exception e) {
if (lifecycle.started()) {
logger.warn("failed to connect to requesting node {}", e, requestingNode);
}
}
}
});
} else {
transportService.sendRequest(requestingNode, ACTION_NAME, multicastPingResponse, new EmptyTransportResponseHandler(ThreadPool.Names.SAME) {
@Override
public void handleException(TransportException exp) {
if (lifecycle.started()) {
logger.warn("failed to receive confirmation on sent ping response to [{}]", exp, requestingNode);
}
}
});
}
}
}
另外的一个方法是处理外部ping信息,处理过程是返回cluster的信息(这种外部ping的具体作用没有研究不是太清楚)。以上是响应MulticastZenPing的过程,收到其它节点的响应信息后它会把本节点及集群的master节点相关信息返回给广播节点。这样广播节点就获知了集群的相关信息。在MulticastZenPing类中还有一个类 MulticastPingResponseRequestHandler,它的作用是广播节点对其它节点对广播信息响应的回应,广播节点的第二次发送信息的过程。它跟其它TransportRequestHandler一样它有messageReceived方法,在启动时注册到transportserver中,只处理一类action:"internal:discovery/zen/multicast"。下面再看一下ping请求的发送策略,代码如下:
public void ping(final PingListener listener, final TimeValue timeout) {
....
//产生一个id
final int id = pingIdGenerator.incrementAndGet();
try {
receivedResponses.put(id, new PingCollection());
sendPingRequest(id);//第一次发送ping请求
// 等待时间的1/2后再次发送一个请求
threadPool.schedule(TimeValue.timeValueMillis(timeout.millis() / 2), ThreadPool.Names.GENERIC, new AbstractRunnable() {
@Override
public void onFailure(Throwable t) {
logger.warn("[{}] failed to send second ping request", t, id);
finalizePingCycle(id, listener);
} @Override
public void doRun() {
sendPingRequest(id);
//再过1/2时间再次发送一个请求
threadPool.schedule(TimeValue.timeValueMillis(timeout.millis() / 2), ThreadPool.Names.GENERIC, new AbstractRunnable() {
@Override
public void onFailure(Throwable t) {
logger.warn("[{}] failed to send third ping request", t, id);
finalizePingCycle(id, listener);
} @Override
public void doRun() {
// make one last ping, but finalize as soon as all nodes have responded or a timeout has past
PingCollection collection = receivedResponses.get(id);
FinalizingPingCollection finalizingPingCollection = new FinalizingPingCollection(id, collection, collection.size(), listener);
receivedResponses.put(id, finalizingPingCollection);
logger.trace("[{}] sending last pings", id);
sendPingRequest(id);
//最后一次发送请求,超时的1/4后
threadPool.schedule(TimeValue.timeValueMillis(timeout.millis() / 4), ThreadPool.Names.GENERIC, new AbstractRunnable() {
@Override
public void onFailure(Throwable t) {
logger.warn("[{}] failed to finalize ping", t, id);
} @Override
protected void doRun() throws Exception {
finalizePingCycle(id, listener);
}
});
}
});
}
});
} catch (Exception e) {
logger.warn("failed to ping", e);
finalizePingCycle(id, listener);
}
}
发送过程主要是调用sendPingRequest(id)方法,在该方法中会将id,信息头,版本,本地节点信息一起写入到BytesStreamOutput中然后将其进行广播,这个广播信息会被其它机器上的Receiver接收并处理,并且响应该ping请求。另外一个需要关注的是以上加说明的部分,它通过链时的定期发送请求,在等待时间内可能会发出4次请求,这种发送方式会造成大量的ping请求重复,幸好ping的资源消耗小,但是好处是可以尽可能保证在timeout这个时间段内集群的新增节点都能收到这个ping信息。在单播中也采用了该策略。
总结一下广播的过程:广播使用的是jdk的MulticastSocket,在timeout时间内4次发生ping请求,ping请求包括一个id,信息头,本地节点的一些信息;这些信息在其它节点中被接收到交给Receiver处理,Receiver会将集群的master和本机的相关信息通过transport返回给广播节点。广播节点收到这些信息后会理解使用transport返回一个空的response。至此一个广播过程完成。
在节点分布在多个网段时,广播就失效了,因为广播信息不可达。这个时间就需要使用单播去ping指定的节点获取cluster的相关信息。这就是单播的用处。单播使用的是NettyTransport,它会使用跟广播一样的链式请求向指定的节点发送请求。信息的处理方式是之前所介绍的NettyTransport标准的信息处理过程。这里就不再做详细说明,有兴趣可以参考相关源码。
zendiscovery 的Ping机制的更多相关文章
- Ribbon Ping机制
在负载均衡器中,提供了 Ping 机制,每隔一段时间,会去 Ping 服务器,判断服务器是否存活,该工作由 com.netflix.loadbalancer.IPing 接口的实现类负责,如果单独使用 ...
- 阶段总结-Java基础-超进阶
Gitee项目地址:https://gitee.com/zc10010/java_interview_guide/tree/master/知识点话术 项目叫话术,但是我觉得作为知识点学习是挺不错的. ...
- MHA参数 转
http://blog.csdn.net/wulantian/article/details/12503473 http://blog.csdn.net/wulantian/article/categ ...
- 记录最近的几个bug
记录最近出的几个bug connection reset by peer 最近服务器经常性的出现connection reset by peer的错误,开始我们只是以为小概率的网络断开导致的,可是随着 ...
- 使用.NET Remoting开发分布式应用——基于租约的生存期
一.概述 知名类型的SingleCall对象可以在客户程序的方法调用之后被垃圾收集器清理掉,因为它没有保持状态,属于无状态的.而客户激活的类型的对象和知名类型的SingleTon对象都属于生存期长的对 ...
- 关于 Mybatis的原生连接池 和 DBCP 连接池
一 遇到的问题: 项目用的play框架,数据库DB2, 持久化框架是Mybatis, 连接池用的是Mybatis原生的,遇到的问题是:有时候抛出如下异常: play.api.UnexpectedEx ...
- MySQL高可用系列之MHA(二)
一.參数说明 MHA提供了一系列配置參数.深入理解每一个參数的详细含义,对优化配置.合理使用MHA非常重要.非常多高可用性也都是通过合理配置一些參数而实现的. MHA包含例如以下配置參数,分别说明例如 ...
- DG archive gap
什么是archive gap Archive Gap就是standby端日志应用的过程中丢失的一段范围的redo.典型的发生在standby端不能接收primary的redo信息或者接收后不能应用这些 ...
- USB 3.0规范中译本 附录
本文为CoryXie原创译文,转载及有任何问题请联系cory.xie#gmail.com. 附录A 符号编码 表A-1显示了对于数据字符字节到符号的编码. 表 A-2显示了对于特殊符号的编码. R ...
随机推荐
- CMSIS-RTOS 中断处理Interrupt Handling
RTOS中断处理Interrupt Handling 在RTOS中使用信号来触发线程间的行为是比较简单和高效的,而对于Cortex-M微控制器来讲,从中断源获取信号来触发线程同样是一种重要的方式.虽然 ...
- 【习题 8-16 UVA - 1618】Weak Key
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 枚举N[q]和N[r]的位置 因为N[q]是最大值,且N[r]是最小值. 且它们是中间的两个. 枚举这两个可以做到不重复枚举. 然后 ...
- Spring Boot学习总结(1)——Spring Boot入门
摘要:Spring Boots是为了帮助开发人员很容易的创建出独立运行和产品级别的基于 Spring 框架的应用. 从 Spring Boot 项目名称中的 Boot 可以看出来,Spring Boo ...
- iOS数字媒体开发浅析
概述 自然界中的所有看到的听到的都是模拟信号,模拟信号是随时间连续变化,然而手机电脑等信息都属于数字媒体,它们所呈现的内容就是把自然界中这些模拟信号转换成数字信号然后再传递给我们.数字信号不是连续的是 ...
- Android——4.2 - 3G移植之路之 APN (五)
APN,这东西对于刚接触的人来说并非那么好理解.对于3G移植上网不可缺少,这里记录一下. 撰写不易,转载请注明出处:http://blog.csdn.net/jscese/article/detail ...
- swift具体解释之八---------------下标脚本
swift具体解释之八-----下标脚本 下标脚本 能够定义在类(Class).结构体(structure)和枚举(enumeration)这些目标中.能够觉得是訪问对象.集合或序列的快捷方式.不须要 ...
- 常用sql语句及案例
目录 1)基本 2)数学函数 3)rownum 4)分页 5)时间处理 6)字符函数 7)to_number 8)聚合函数 9)学生选课 10)图书馆借阅 基本 --新建表: create table ...
- HDU 4431 Mahjong 模拟
http://acm.hdu.edu.cn/showproblem.php?pid=4431 不能说是水题了,具体实现还是很恶心的...几乎优化到哭但是DFS(还加了几个剪枝)还是不行...搜索一直T ...
- codeforces1114D. Flood Fill(区间Dp)
传送门: 解题思路: 区间Dp,发现某一个区间修改后区间颜色一定为左边或右边的颜色. 那么只需要设方程$f_(l,r,0/1)$表示区间$[l,r]$染成左/右颜色的最小代价 转移就是枚举左右颜色就好 ...
- 海思平台服务器版软件V15.2产品发布
深度操作系统海思平台服务器版软件是武汉深之度科技有限公司发布的针对华为海思平台的TaiShan系列服务器发布的企业级服务器操作系统软件产品,主要面向企业级服务器应用场景,为用户在国产化平台上提供更具可 ...