很容易想到只考虑后缀长度必须为\(max(height[rk[i]],height[rk[i]+1])+1\)(即\([i,i+x-1]\)代表的串只出现过一次)然后我正着做一遍反着做一遍,再取一个\(min\)最后挂了。。。

设\(x=max(height[rk[i]],height[rk[i]+1])+1\)我们考虑\(i\)的贡献,会给区间\([i,i+x-1]\)一个贡献x

,设\(r=i+x-1\)然后会给r+1一个贡献x+1就是(r+1)-i+1,接着是r+2的贡献(r+2)-i+1。。。

最后我们对每一个点求出这个点的最小的贡献。这堆东西可以用线段树维护。

值得注意的一点是当i+x-1>n时并不能产生贡献,因为此时已经到了字符串末尾。

我们无法加上\(max(height[rk[i]],height[rk[i]+1])+1\)最后的那个1。

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
#define mid ((l+r)>>1)
#define ls now<<1
#define rs now<<1|1
const int N=501000;
int c[N],x[N],y[N],sa[N],rk[N],height[N],n,m;
int lazy1[N*5],lazy2[N*5],mn[N*5];
char s[N];
void get_sa(){
for(int i=1;i<=n;i++)c[x[i]=s[i]]++;
for(int i=1;i<=m;i++)c[i]+=c[i-1];
for(int i=n;i>=1;i--)sa[c[x[i]]--]=i;
for(int k=1;k<=n;k<<=1){
int num=0;
for(int i=n-k+1;i<=n;i++)y[++num]=i;
for(int i=1;i<=n;i++)if(sa[i]>k)y[++num]=sa[i]-k;
for(int i=1;i<=m;i++)c[i]=0;
for(int i=1;i<=n;i++)c[x[i]]++;
for(int i=1;i<=m;i++)c[i]+=c[i-1];
for(int i=n;i>=1;i--)sa[c[x[y[i]]]--]=y[i],y[i]=0;
for(int i=1;i<=n;i++)swap(x[i],y[i]);
x[sa[1]]=1;num=1;
for(int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
if(n==num)break;
m=num;
}
}
void get_height(){
int k=0;
for(int i=1;i<=n;i++)rk[sa[i]]=i;
for(int i=1;i<=n;i++){
if(rk[i]==1)continue;
if(k)k--;
int j=sa[rk[i]-1];
while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k])k++;
height[rk[i]]=k;
}
}
void build(int l,int r,int now){
if(l==r){mn[now]=n;return;}
build(l,mid,ls);
build(mid+1,r,rs);
}
void update(int now){
mn[now]=min(mn[ls],mn[rs]);
}
void pushdown(int l,int r,int now){
if(l==r)return;
if(lazy1[now]){
mn[ls]=min(mn[ls],lazy1[now]);
mn[rs]=min(mn[rs],lazy1[now]);
if(lazy1[rs])lazy1[rs]=min(lazy1[rs],lazy1[now]);
else lazy1[rs]=lazy1[now];
if(lazy1[ls])lazy1[ls]=min(lazy1[ls],lazy1[now]);
else lazy1[ls]=lazy1[now];
lazy1[now]=0;
}
if(lazy2[now]){
mn[ls]=min(mn[ls],l+lazy2[now]);
mn[rs]=min(mn[rs],mid+1+lazy2[now]);
if(lazy2[rs])lazy2[rs]=min(lazy2[rs],lazy2[now]);
else lazy2[rs]=lazy2[now];
if(lazy2[ls])lazy2[ls]=min(lazy2[ls],lazy2[now]);
else lazy2[ls]=lazy2[now];
lazy2[now]=0;
}
}
void add1(int l,int r,int L,int R,int w,int now){
pushdown(l,r,now);
if(l==L&&r==R){
lazy1[now]=w;
mn[now]=min(mn[now],w);
return;
}
if(L>mid)add1(mid+1,r,L,R,w,rs);
else if(R<=mid)add1(l,mid,L,R,w,ls);
else add1(l,mid,L,mid,w,ls),add1(mid+1,r,mid+1,R,w,rs);
update(now);
}
void add2(int l,int r,int L,int R,int w,int now){
if(L>R)return;
pushdown(l,r,now);
if(l==L&&r==R){
lazy2[now]=w;
mn[now]=min(l+w,mn[now]);
return;
}
if(L>mid)add2(mid+1,r,L,R,w,rs);
else if(R<=mid)add2(l,mid,L,R,w,ls);
else add2(l,mid,L,mid,w,ls),add2(mid+1,r,mid+1,R,w,rs);
update(now);
}
int check(int l,int r,int x,int now){
pushdown(l,r,now);
if(l==r)return mn[now];
if(x>mid)return check(mid+1,r,x,rs);
else return check(l,mid,x,ls);
}
int main(){
scanf("%s",s+1);
n=strlen(s+1);
m=122;
get_sa();get_height();
build(1,n,1);
for(int i=1;i<=n;i++){
int tmp=max(height[rk[i]],height[rk[i]+1])+1;
if(i+tmp-1<=n)add1(1,n,i,i+tmp-1,tmp,1);
add2(1,n,i+tmp,n,-i+1,1);
}
for(int i=1;i<=n;i++)printf("%d\n",check(1,n,i,1));
return 0;
}

BZOJ 2865 字符串识别(后缀数组+线段树)的更多相关文章

  1. BZOJ 2865 字符串识别 | 后缀数组 线段树

    集训讲字符串的时候我唯一想出正解的题-- 链接 BZOJ 2865 题面 给出一个长度为n (n <= 5e5) 的字符串,对于每一位,求包含该位的.最短的.在原串中只出现过一次的子串. 题解 ...

  2. bzoj 2865 字符串识别 —— 后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2865 唯一出现的子串就是每个后缀除去和别的后缀最长的 LCP 之外的前缀: 所以用这个更新一 ...

  3. bzoj 2865 字符串识别——后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2865 做出 ht[ ] 之后,sa[ ] 上每个位置和它前面与后面取 LCP ,其中较大的长 ...

  4. 【BZOJ4556】[TJOI2016&HEOI2016] 字符串(后缀自动机+线段树合并+二分)

    点此看题面 大致题意: 给你一个字符串\(s\),每次问你一个子串\(s[a..b]\)的所有子串和\(s[c..d]\)的最长公共前缀. 二分 首先我们可以发现一个简单性质,即要求最长公共前缀,则我 ...

  5. bzoj 1396: 识别子串 && bzoj 2865: 字符串识别【后缀数组+线段树】

    根据height数组的定义,和当前后缀串i最长的相同串的长度就是max(height[i],height[i+1]),这个后缀贡献的最短不同串长度就是len=max(height[i],height[ ...

  6. BZOJ 1396: 识别子串( 后缀数组 + 线段树 )

    这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法..... 求出Height数组后, 我们枚举每一位当做子串的开头. 如上图(x, y是height值), Heigh ...

  7. BZOJ.1396.识别子串(后缀自动机/后缀数组 线段树)

    题目链接 SAM:能成为识别子串的只有那些|right|=1的节点代表的串. 设这个节点对应原串的右端点为r[i],则如果|right[i]|=1,即\(s[\ [r_i-len_i+1,r_i-le ...

  8. BZOJ 5496: [2019省队联测]字符串问题 (后缀数组+主席树优化建图+拓扑排序)

    题意 略 分析 考场上写了暴力建图40分溜了-(结果只得了30分) 然后只要优化建边就行了 首先给出的支配关系无法优化,就直接A向它支配的B连边. 考虑B向以B作为前缀的所有A连边,做一遍后缀数组,两 ...

  9. 【XSY1551】往事 广义后缀数组 线段树合并

    题目大意 给你一颗trie树,令\(s_i\)为点\(i\)到根的路径上的字符组成的字符串.求\(max_{u\neq v}(LCP(s_u,s_v)+LCS(s_u,s_v))\) \(LCP=\) ...

随机推荐

  1. Django框架详解之template

    模板简介 将页面的设计和python的代码分离开会更干净简洁更容易维护.我们可以使用Django的模板系统来实现这种模式 python的模板:HTML代码+模板语法 模板包括在使用时会被值替换掉的变量 ...

  2. C++介绍与入门学习

    C++是C语言的继承,它既可以进行C语言的过程化程序设计,又可以进行以抽象数据类型为特点的基于对象的程序设计,还可以进行以继承和多态为特点的面向对象的程序设计.C++擅长面向对象程序设计的同时,还可以 ...

  3. 04 SqlServer

    数据库的注释 –(两个横线) 主键表 外键表 主键,组合主键 SqlServer 使用附加 权限 主文件mdf 日志文件ldf 数据类型 char varchar nchar nvarchar cha ...

  4. python的迭代器、生成器、三元运算、列表解析、生成器表达式

    一 迭代的概念 迭代是Python最强大的功能之一,是访问集合元素的一种方式. 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前 ...

  5. js实现新闻滚动实例

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...

  6. SELECT使用子查询

    SELECT使用子查询   SELECT使用子查询,该子查询会执行多次,  次数是由记录数量决定.效率比较低,不推荐使用.  //查询部门编号,工资大于等于2000的人数,  //工资小于2000的人 ...

  7. linux内核(一)基础知识

    1,linux内核的基础知识 1.1 linux内核版本 从内核源码顶层目录Makefile中可以看到: VERSION和PATCHLEVEL组成主版本号,比如2.4.2.5.2.6等,稳定版本的德主 ...

  8. 2015 Multi-University Training Contest 7 hdu 5373 The shortest problem

    The shortest problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  9. 2014百度之星资格赛—— Xor Sum(01字典树)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  10. POJ 1765 November Rain

    题目大意: 有一些屋顶,相当于一些线段(不想交). 问每一条线段能够接到多少水,相对较低的屋顶能够接到高屋顶留下的水(如题图所看到的).因为y1!=y2,所以保证屋顶是斜的. 解题思路: 扫描线,由于 ...