[bzoj3209]花神的数论题_数位dp
花神的数论题 bzoj-3209
题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$
注释:$1\le n\le 10^{15}$。
想法:喷一下题目...神tm数论题,明明是个dp。
显然,如果稍微打个表的话就可以发现,有很多数的sum是相等的,我们不想重复乘这么多次,所以我们想到将所有sum相等的数弄到一起然后快速幂。这样,就不难想到数位dp
状态:dp[i][j]表示i位,sum值是j的个数。
转移是容易的,按照数位dp的边界特判就行了。
最后,附上丑陋的代码... ...
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long int ll;
const int MAXN=60+5;
const ll mod=10000007;
ll n, Ans;
ll C[MAXN][MAXN];
int l,wei[MAXN];
void pre()
{
for (int i=0;i<=60;++i)
C[i][0]=1;
for(int i=1;i<=60;i++)
for(int j=1;j<=i;++j)
C[i][j]=C[i-1][j-1]+C[i-1][j];
}
ll Solve(int x)
{
ll sum=0;
for(int i=l;i>=1;i--)
{
if(wei[i]==1)
{
sum+=C[i-1][x];
--x;
}
if(x<0) break;
}
return sum;
}
ll quick_power(ll x,ll y)
{
ll ans=1;
while(y)
{
if(y&1) ans=(ans*x)%mod;
y>>=1;
x=(x*x)%mod;
}
return ans;
}
int main()
{
pre();
scanf("%lld",&n);
++n;
l=0;
while(n)
{
wei[++l]=n&1;
n>>=1;
}
Ans=1ll;
for(int i=1;i<=l;i++)
{
Ans=Ans*quick_power(i,Solve(i))%mod;
}
printf("%lld\n",Ans);
return 0;
}
小结:有意思...别被题面迷惑了(@EdwardFrog)
[bzoj3209]花神的数论题_数位dp的更多相关文章
- [Bzoj3209]花神的数论题(数位dp)
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2633 Solved: 1182[Submit][Status][Disc ...
- bzoj3209 花神的数论题 (二进制数位dp)
二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...
- 2018.10.27 bzoj3209: 花神的数论题(数位dp)
传送门 数位dpdpdp经典题. 题面已经暗示了我们按照二进制位来数位dpdpdp. 直接dpdpdp多少个数有111个111,222个111,333个111-, 然后快速幂算就行了. 于是我们枚举前 ...
- 【洛谷】4317:花神的数论题【数位DP】
P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...
- 【BZOJ3209】花神的数论题(数位DP)
点此看题面 大致题意: 设\(sum(i)\)表示\(i\)二进制中1的个数,请求出\(\prod_{i=1}^n sum(i)\). 数位\(DP\) 很显然,这是一道数位\(DP\)题.我们可以先 ...
- BZOJ 3209: 花神的数论题【数位dp】
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- BZOJ_3209_花神的数论题_组合数+数位DP
BZOJ_3209_花神的数论题_组合数+数位DP Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又 ...
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
随机推荐
- everything的使用
https://www.voidtools.com/support/everything/searching/ 打开多个everything进程 https://www.voidtools.com/s ...
- Find Minimum in Rotated Sorted Array 典型二分查找
https://oj.leetcode.com/problems/find-minimum-in-rotated-sorted-array/ Suppose a sorted array is rot ...
- Python 30 单例模式
单例模式 多次实例化的结果指向同一个实例 单例模式实现方式 import settings #方式一: class MySQL: __instance=None def __init__(self,i ...
- Redis(四)-配置
Redis 配置 Redis 的配置文件位于 Redis 安装目录下,文件名为 redis.conf. 你可以通过 CONFIG 命令查看或设置配置项. 语法 Redis CONFIG 命令格式如下: ...
- 7.Flask-上传文件和访问上传的文件
1.1.上传文件和访问上传的文件 upload_file_demo.py from flask import Flask,request,render_template import os from ...
- Elasticsearch之更新(全部更新和局部更新)
前面的基础, Elasticsearch之curl创建索引库 Elasticsearch之curl创建索引 Elasticsearch之curl创建索引库和索引时注意事项 Elasticsearch之 ...
- PHP序列化 反序列化
序列化是将变量转换为可保存或传输的字符串的过程:反序列化就是在适当的时候把这个字符串再转化成原来的变量使用.这两个过程结合起来,可以轻松地存储和传输数据,使程序更具维护性. 1. serialize和 ...
- SQLServer2008 关于CASE WHEN
CASE WHEN的两种格式 1.简单Case函数 CASE sex WHEN '1' THEN '男' WHEN '2' THEN '女' ELSE '其他' END 2.Case搜索函数 CASE ...
- Struts/Hibernate/Spring源码下载
Struts: https://olex.openlogic.com/packages/struts Hibernate: https://olex.openlogic.com/packages/hi ...
- matplotlib之pyplot 知识点滴
以下是一些常用地址链接,请参考 matplotlib 官方网址 plt.plot()函数细节 Matplotlib 中文用户指南 4.6 编写数学表达式 Python seaborn matplotl ...