Find them, Catch them
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 39402   Accepted: 12101

Description

The police office in Tadu City decides to say ends to the chaos, as launch actions to root up the TWO gangs in the city, Gang Dragon and Gang Snake. However, the police first needs to identify which gang a criminal belongs to. The present question is, given two criminals; do they belong to a same clan? You must give your judgment based on incomplete information. (Since the gangsters are always acting secretly.)

Assume N (N <= 10^5) criminals are currently in Tadu City, numbered from 1 to N. And of course, at least one of them belongs to Gang Dragon, and the same for Gang Snake. You will be given M (M <= 10^5) messages in sequence, which are in the following two kinds:

1. D [a] [b] 
where [a] and [b] are the numbers of two criminals, and they belong to different gangs.

2. A [a] [b] 
where [a] and [b] are the numbers of two criminals. This requires you to decide whether a and b belong to a same gang. 

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case begins with a line with two integers N and M, followed by M lines each containing one message as described above.

Output

For each message "A [a] [b]" in each case, your program should give the judgment based on the information got before. The answers might be one of "In the same gang.", "In different gangs." and "Not sure yet."

Sample Input

1
5 5
A 1 2
D 1 2
A 1 2
D 2 4
A 1 4

Sample Output

Not sure yet.
In different gangs.
In the same gang.
/*
@ title : poj1703
@ method : union-find sets
@ result : Accepted 1948K 813MS G++ 967B
@ auther : baneHunter
@ date : 2016/3/19
*/
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN=;
int par[MAXN+MAXN],rnk[MAXN+MAXN];
int n,m;
void prep()
{
for(int i=;i<MAXN+MAXN;i++)
{
par[i]=i;
rnk[i]=;
}
} int fnd(int x)
{
if(x==par[x])
return x;
return par[x]=fnd(par[x]);
} void unite(int x,int y)
{
int a=fnd(x);
int b=fnd(y);
if(a==b) return ;
if(rnk[a]<rnk[b])
{
par[a]=b;
}
else
{
par[b]=a;
if(rnk[a]==rnk[b])
rnk[a]++;
}
} bool same(int x,int y)
{
return fnd(x)==fnd(y);
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
prep();
while(m--)
{
scanf("%*c");
char op;
int x,y;
scanf("%c",&op);
scanf("%d%d",&x,&y);
if(op=='A')
{
if(same(x,y))
{
printf("In the same gang.\n");
}
else if(same(x,y+n))
{
printf("In different gangs.\n");
}
else printf("Not sure yet.\n");
}
else
{
unite(x+n,y);
unite(x,y+n);
}
}
} return ;
}

POJ1703(2集合并查集)的更多相关文章

  1. 51NOD 1821 最优集合 [并查集]

    传送门 题意: 一个集合S的优美值定义为:最大的x,满足对于任意i∈[1,x],都存在一个S的子集S',使得S'中元素之和为i. 给定n个集合,对于每一次询问,指定一个集合S1和一个集合S2,以及一个 ...

  2. 【并查集】 不相交集合 - 并查集 教程(文章作者:Slyar)

    最近写了一个多星期的并查集,一瞬间贴出这么多解题报告,我想关于并查集的应用先告一段落吧,先总结一下. 在网上看到一篇关于并查集比较好的教程(姑且允许我这么说吧),不转过来是在可惜.献给爱学习的你 文章 ...

  3. poj1703(种类并查集)

    题意:有两个犯罪集团,现在有两种操作,D [a] [b]表示a和b是属于不同犯罪集团的,A [a] [b] 是询问你a和b的关系,如果ab属于同一个犯罪集团,输出In the same gang.   ...

  4. POJ1703带权并查集(距离或者异或)

    题意:       有两个黑社会帮派,有n个人,他们肯定属于两个帮派中的一个,然后有两种操作 1 D a b 给出a b 两个人不属于同一个帮派 2 A a b 问a b 两个人关系 输出 同一个帮派 ...

  5. 并查集(HDOJ 1856)

    并查集   英文:Disjoint Set,即“不相交集合” 将编号分别为1…N的N个对象划分为不相交集合, 在每个集合中,选择其中某个元素代表所在集合. 常见两种操作: n       合并两个集合 ...

  6. 并查集 (Union-Find Sets)及其应用

    定义 并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题.常常在使用中以森林来表示. 集就是让每个元素构成一个单元素的集合,也就是按一定顺序将属于同一组的 ...

  7. poj 1611 The Suspects(第一道并查集)

    题意: 有N个学生,编号为0-n-1,现在0号学生感染了非典,凡是和0在一个社团的人就会感染, 并且这些人如果还参加了别的社团,他所在的社团照样全部感染,社团个数为m,求感染的人数. 输入: n代表人 ...

  8. hdu 1856 More is better (并查集)

    More is better Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 327680/102400 K (Java/Others) ...

  9. C. K-Complete Word(小小的并查集啦~)

    永久打开的传送门 \(\color{Pink}{-------------分割-------------}\) \(n最大有2e5,那么暴力一定不行,找规律\) \(我们发现第i位的字符一定和第i+k ...

随机推荐

  1. CoreMotion 加速器陀螺仪

    初始化CoreMotion #import <CoreMotion/CoreMotion.h> CMMotionManager *motionManager = [[CMMotionMan ...

  2. Linux中的man

    1.查看命令的帮助信息 man mkdir 2.查看服务配置文件的帮助信息 man services 说明: a.如果没有man通过yum install man安装 b.如果命令和服务同名了,那就指 ...

  3. 有关numpy.random下的API具体含义

    1.numpy.random.random(size=None) Return random floats in the half-open interval [0.0, 1.0). 返回size大小 ...

  4. Microsoft Office Document Imaging批量ocr 方法

    先将pdf文件->导出->tiff文件,生成pdf每页的tiff文件 使用 G:\SoftWare-new\tiff文件合并拆分工具 将一个导出的单个tiff合并为一个tiff文件 再用 ...

  5. Elatsicsearch分片和副本相关知识

    1.分片和副本 1.1什么是分片 简单来讲就是咱们在ES中所有数据的文件块,也是数据的最小单元块,整个ES集群的核心就是对所有分片的分布.索引.负载.路由等达到惊人的速度. 分片是把索引数据切分成多个 ...

  6. iOS swift 常量 && 宏定义

    全局常量 在C和Objective-C语言源文件中定义的全局常量会自动地被Swift编译引进并做为Swift的全局常量. 预处理指令 Swift编译器不包含预处理器.取而代之的是,它充分利用了编译时属 ...

  7. Data Structure Binary Tree: Convert a given Binary Tree to Doubly Linked List

    http://www.geeksforgeeks.org/in-place-convert-a-given-binary-tree-to-doubly-linked-list/ #include &l ...

  8. hd acm2045

    LELE的RPG难题 析: 假设有N个方格时的涂法是F[N]种.当前边n-1个方格成立时,再加第n种颜色无影响,此时有F[N-1]种涂法,当n-1个方格违法时,即有两个相邻的格子颜色相同,则有n-2个 ...

  9. 使用 Apache poi 导入Excel

    本文主要记录Excel导入及模板下载,遇到的问题及注意事项. 第一节:Excel导入   1.如何获取Excel中的最大行,也就是最后一行? 2.如何获取有效行?有效行的定义是每一行记录中每一列中值都 ...

  10. HDU 1800 Flying to the Mars 字典树,STL中的map ,哈希树

    http://acm.hdu.edu.cn/showproblem.php?pid=1800 字典树 #include<iostream> #include<string.h> ...