【Kernel Logistic Regression】林轩田机器学习技术
最近求职真慌,一方面要看机器学习,一方面还刷代码。还是静下心继续看看课程,因为觉得实在讲的太好了。能求啥样搬砖工作就随缘吧。
这节课的核心就在如何把kernel trick到logistic regression上。
首先把松弛变量的表达形式修改一下,把constrained的形式改成unconstrained的形式。
改成这种'unconstrained' form of soft-margin SVM之后,突然发现很像L2 regularization
如果用regularized model的角度来看SVM,可以对应C跟lambda对应上。
上面仅仅说soft-margin SVM跟L2 regularization在形式上比较像。下面从erro measure的角度来分析二者相似性。
从error measure的角度来说,SVM确实长得跟LogReg比较像。
再从binary classification的角度看soft-margin SVM跟LogReg L2
(1)soft-margin的SVM跟LogReg都能bound住PLA的那条error measure
(2)soft-margin SVM跟LogReg的曲线长得像
上面讲了这么多,到底为了说明什么呢?我觉得林就是想说的事情如下:
(1)Logistic Regression的binary classification好,SVM的kernel好
(2)咋把kernel trick给移到LogReg里面。
先给出来一个Probabilistic SVM的算法。
具体的做法分两步:
(1)用kernel soft-margin SVM先对根据数据求出来W'svm和bsvm
(2)引入A和B两个变量到LogReg中(A做大小变化,B做截距平移变化)
通过这样的方式好处有两个:
(1)既能用dual SVM的好处,把kernel trick给直接引进了
(2)表达式是A、B无约束的极值问题,可以用梯度法等求解
这里求出来的A应该最好是正的,这里的B应该初始值是很小的(否则,原来SVM的效果就太差了)
上面的这种方法,只是一个近似的把SVM跟LogReg结合的方法。其实,也有比较exact的kernel trick用到LogReg上的。
能用kernel trick最核心的一点就是W可以表示成输入向量的线性组合(represented by data)
PLA SVM是已经证明过的,LogReg也是这样的。
那么这个能不能有推广性。
其实是可以有的,对于L2 regularization这种形式的linear model是可以有的,如下。
上面要论证的问题是:到底符合L2的这种线性模型,W能否一定能表示成Zn的线性组合。
这里用的比较直观的证明:核心就是把W拆成平行于Z空间的分量和垂直与Z空间的分量。
很容易证明
(1)垂直于Z空间的分量对后一项err并不起到作用
(2)对于前一项起来,如果W有垂直于Z空间的分量,则肯定不是最小值,至少要把垂直分量去掉才行
综上述,Representer Theorem对于L2-regularized linear model是可行的。
因此,这个结论很棒,L2-regularized linear model可以被kernlized。
因此这种L2-LogReg的问题就好解了,因为已经representer theorem让我们已经知道了W的形式。
所以,直接变成了对N个beta的无约束优化问题。则kernel trick对于LogReg是可以迁移过去的。
从另一个角度来看,其实L2-LogReg的原来求解问题,就转化成了在beta空间求解的问题了。这里求出来的beta可能大多不是零,会占用很多计算资源。
【Kernel Logistic Regression】林轩田机器学习技术的更多相关文章
- 【Gradient Boosted Decision Tree】林轩田机器学习技术
GBDT之前实习的时候就听说应用很广,现在终于有机会系统的了解一下. 首先对比上节课讲的Random Forest模型,引出AdaBoost-DTree(D) AdaBoost-DTree可以类比Ad ...
- 【Soft-Margin Support Vector Machine】林轩田机器学习技术
Hard-Margin的约束太强了:要求必须把所有点都分开.这样就可能带来overfiiting,把noise也当成正确的样本点了. Hard-Margin有些“学习洁癖”,如何克服这种学习洁癖呢? ...
- 【Kernal Support Vector Machine】林轩田机器学习技术
考虑dual SVM 问题:如果对原输入变量做了non-linear transform,那么在二次规划计算Q矩阵的时候,就面临着:先做转换,再做内积:如果转换后的项数很多(如100次多项式转换),那 ...
- (转载)林轩田机器学习基石课程学习笔记1 — The Learning Problem
(转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can M ...
- 【 Logistic Regression 】林轩田机器学习基石
这里提出Logistic Regression的角度是Soft Binary Classification.输出限定在0~1之间,用于表示可能发生positive的概率. 具体的做法是在Linear ...
- 【Support Vector Regression】林轩田机器学习技法
上节课讲了Kernel的技巧如何应用到Logistic Regression中.核心是L2 regularized的error形式的linear model是可以应用Kernel技巧的. 这一节,继续 ...
- 【Radial Basis Function Network】林轩田机器学习技法
这节课主要讲述了RBF这类的神经网络+Kmeans聚类算法,以及二者的结合使用. 首先回归的了Gaussian SVM这个模型: 其中的Gaussian kernel又叫做Radial Basis F ...
- 【Adaptive Boosting】林轩田机器学习技法
首先用一个形象的例子来说明AdaBoost的过程: 1. 每次产生一个弱的分类器,把本轮错的样本增加权重丢入下一轮 2. 下一轮对上一轮分错的样本再加重学习,获得另一个弱分类器 经过T轮之后,学得了T ...
- 【Linear Models for Binary Classification】林轩田机器学习基石
首先回顾了几个Linear Model的共性:都是算出来一个score,然后做某种变化处理. 既然Linear Model有各种好处(训练时间,公式简单),那如何把Linear Regression给 ...
随机推荐
- Arduino-定义串口
在一个老外写的代码中找到了一个非常好的定义串口的方法! Arduino用下面这种方法定义串口可以方便的把协议应用的任意的端口,大大提高了代码的修改性和移植性. 以下是范例: ...
- SAP CRM和C4C数据同步的两种方式概述:SAP PI和HCI
SAP Cloud for Customer(C4C)和SAP其他传统产品进行数据同步的方式,如下图所示,可以使用SAP Netweaver Process Integration或者SAP HANA ...
- 静态库是.o文件的集合与弱符号
静态库是.o文件的集合. 静态库与弱符号的概念相关联. 在生成库文件时,不做强符号检查.
- Treap 实现名次树
在主流STL版本中,set,map,都是BST实现的,具体来说是一种称为红黑树的动态平衡BST: 但是在竞赛中并不常用,因为红黑树过于复杂,他的插入 5 种,删除 6 中,代码量极大(如果你要改板子的 ...
- Better exception message for missing @RequestBody method parameter
https://jira.spring.io/browse/SPR-12888 Description When I use @RequestBody on one of my controllers ...
- 在matlab中查看变量的数据类型
>> x = x = >> class(x) ans = double
- 【洛谷P1323】删数问题
删数问题 题目链接 首先找出最小的k个数:用堆每次取出最小的元素p,将p*2+1和p*4+5压入堆. 贪心求最大数:从前往后找第一个data[j+1]>data[j],删除data[j].(链表 ...
- VMWare关闭beep声
在虚拟机文件夹下找到 .vmx 文件,在文件末尾添加 mks.noBeep = "TRUE" ,重启虚拟机即可.
- Spring/Spring boot中静态变量赋值
情形1:静态变量为自动注入的对象 解决方案:设置两个变量,非静态变量使用@resource注入Bean,然后使用@PostConstruct在Spring初始化Bean成功后为静态变量赋值 @Comp ...
- Eclipse Git 插件 基本操作一【learn】
安装GIT插件: 我的Eclipse版本为: Oxygen.2 Release (4.7.2),所以自带GIT插件,跳过安装. GIT插件配置: ①.添加好用户名和邮箱 注意下输入格式:user.na ...