前言

\(DP\)这东西真的是博大精深啊......

简介

树形\(DP\),顾名思义,就是在树上操作的\(DP\),一般可以用\(f_i\)表示以编号为\(i\)的节点为根的子树中的最优解。

转移的时候一般都将信息由子节点转移到父亲节点,也就是将信息从下往上转移。

因此,一般树形\(DP\)都会采用 递归 的形式。

典例1:树上背包

树形\(DP\)中有一种比较经典的题型:树上背包

其实它的思想与普通背包差不多,关键在于它玄学的时间复杂度。

很多看似\(O(n^3)\)会\(T\)飞(实际上也的确是这样)的题目,可能你用\(O(n^3)\)的树上背包却能跑过(时间复杂度我也不会证),而且不是因为数据水

可参考一道例题:【洛谷1273】有线电视网

典例2:带负权树的直径

普通的树的直径可以用\(BFS\)来求,但如果是带负权的,\(BFS\)就会被卡炸(可惜我之前不知道)。

于是就用上了树形\(DP\)

可参考一道例题:【杂题】访问计划

几道例题

好吧,\(DP\)好像也没什么东西可讲,这样介绍得还是不够具体。干脆直接看例题来理解一下吧。

第一道例题: 【51nod1299】监狱逃离

这题是一道挺有意思的树形\(DP\)题,我们可以考虑用\(f\)数组来记录每一个节点的状态:完全封死可以从这个节点到达叶子节点有犯人可以到达该节点,然后就不难统计出答案了。

第二道例题: 【BZOJ4033】[HAOI2015] 树上染色

比较经典的树形\(DP\)题。这道题最值得注意的地方不是\(DP\)过程,而是注意在一棵有\(n\)个节点的树上将\(m\)个节点染成黑色与将\(n-m\)个节点染成黑色其实是等价的,不加上这个优化就会\(TLE\)。

第三道例题: 【BZOJ1040】[ZJOI2008] 骑士

一道恶心的基环外向树\(DP\),应该是比较模板的吧。

动态规划专题(二)——树形DP的更多相关文章

  1. DP专题·四(树形dp)

    1.poj 115 TELE 题意:一个树型网络上有n个结点,1~n-m为信号传送器,n-m+1~n为观众,当信号传送给观众后,观众会付费观看,每铺设一条道路需要一定费用.现在求以1为根,使得收到观众 ...

  2. POJ2342 Anniversary party(动态规划)(树形DP)

    Anniversary party Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6635   Accepted: 3827 ...

  3. 【DP_树形DP专题】题单总结

    转载自 http://blog.csdn.net/woshi250hua/article/details/7644959#t2 题单:http://vjudge.net/contest/123963# ...

  4. 动态规划——树形dp

    动态规划作为一种求解最优方案的思想,和递归.二分.贪心等基础的思想一样,其实都融入到了很多数论.图论.数据结构等具体的算法当中,那么这篇文章,我们就讨论将图论中的树结构和动态规划的结合——树形dp. ...

  5. 【转】【DP_树形DP专辑】【9月9最新更新】【from zeroclock's blog】

    树,一种十分优美的数据结构,因为它本身就具有的递归性,所以它和子树见能相互传递很多信息,还因为它作为被限制的图在上面可进行的操作更多,所以各种用于不同地方的树都出现了,二叉树.三叉树.静态搜索树.AV ...

  6. 树形dp总结

    转自 http://blog.csdn.net/angon823 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在"树"的数据结构上的动态规划,平时作的动态规划都是线性的 ...

  7. 树形 DP 总结

    树形 DP 总结 本文转自:http://blog.csdn.net/angon823/article/details/52334548 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在“树 ...

  8. 树形$dp$学习笔记

    今天学习了树形\(dp\),一开始浏览各大\(blog\),发现都\(TM\)是题,连个入门的\(blog\)都没有,体验极差.所以我立志要写一篇可以让初学树形\(dp\)的童鞋快速入门. 树形\(d ...

  9. 树形DP(超详细!!!)

    一.概念 1.什么是树型动态规划 树型动态规划就是在“树”的数据结构上的动态规划,平时作的动态规划都是线性的或者是建立在图上的,线性的动态规划有二种方向既向前和向后,相应的线性的动态规划有二种方法既顺 ...

随机推荐

  1. CF 983B XOR-pyramid(区间dp,异或)

    CF 983B XOR-pyramid(区间dp,异或) 若有一个长度为m的数组b,定义函数f为: \(f(b) = \begin{cases} b[1] & \quad \text{if } ...

  2. 强联通分量之kosaraju算法

    首先定义:强联通分量是有向图G=(V, E)的最大结点集合,满足该集合中的任意一对结点v和u,路径vu和uv同时存在. kosaraju算法用来寻找强联通分量.对于图G,它首先随便找个结点dfs,求出 ...

  3. WebAPI学习及Swagger使用

    本文用来保存自己学习WebAPI和Swagger使用过程中参考的文章,以及对WebAPI的初步了解. 1.RESTful风格 WebAPI只支持Http协议: 1.1.WebAPI与MVC的区别 Va ...

  4. Hadoop 2.0完全分布式集群搭建方法(CentOS7+Hadoop 2.7.7)

    本文详细介绍搭建4个节点的完全分布式Hadoop集群的方法,Linux系统版本是CentOS 7,Hadoop版本是2.7.7,JDK版本是1.8. 一.准备环境 1. 在VMware worksta ...

  5. 编写自定义GenericServlet

    用途: 编写自定义GenericServlet类后,子类只需继承这个类,就可以直接使用ServletConfig的config对象和ServletConfig接口的方法,而不需要init()方法获取c ...

  6. JSP,EL和JSTL

    JSP,EL和JSTL 内容待添加...

  7. 位运算实现四则运算(C++实现)

    前言 Leetcode中有一道这样的题:给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符.返回被除数 dividend 除以除数 di ...

  8. onbeforeunload与onunload事件

    Onunload,onbeforeunload都是在刷新或关闭时调用,可以在<script>脚本中通过 window.onunload来指定或者在<body>里指定.区别在于o ...

  9. Unity [Tooltip("")]

    把Ad2Controller脚本挂在Ad2Ad3Manager游戏对象上,在非运行状态下把鼠标放在inspector的AdButtonObj2上就会显示广告2按钮. 如下图:

  10. sourceInsight4 破解笔记(完美破解)

    https://www.cnblogs.com/Napoleon-Wang/p/6706773.html 时隔好多年,sourceinsight4以迅雷不及掩耳之势的来了.与3.5相比,sourcei ...